Collaborative classification of hyperspectral and visible images with convolutional neural network

被引:21
作者
Zhang, Mengmeng [1 ]
Li, Wei [1 ]
Du, Qian [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS USA
基金
中国国家自然科学基金;
关键词
hyperspectral image; pattern recognition; collaborative classification; convolutional neural network; FUSION;
D O I
10.1117/1.JRS.11.042607
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).
引用
收藏
页数:12
相关论文
共 32 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], 2015, IEEE C COMP VIS PATT
[3]   Multi-Modal and Multi-Temporal Data Fusion: Outcome of the 2012 GRSS Data Fusion Contest [J].
Berger, Christian ;
Voltersen, Michael ;
Eckardt, Robert ;
Eberle, Jonas ;
Heyer, Thomas ;
Salepci, Nesrin ;
Hese, Soeren ;
Schmullius, Christiane ;
Tao, Junyi ;
Auer, Stefan ;
Bamler, Richard ;
Ewald, Ken ;
Gartley, Michael ;
Jacobson, John ;
Buswell, Alan ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) :1324-1340
[4]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[5]   Using Basic Image Features for Texture Classification [J].
Crosier, M. ;
Griffin, L. D. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (03) :447-460
[6]   Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas [J].
Dalponte, Michele ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05) :1416-1427
[7]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[8]   Application of spectral mixture analysis and image fusion techniques for image sharpening [J].
Gross, HN ;
Schott, JR .
REMOTE SENSING OF ENVIRONMENT, 1998, 63 (02) :85-94
[9]   Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests [J].
Guo, Li ;
Chehata, Nesrine ;
Mallet, Clement ;
Boukir, Samia .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (01) :56-66
[10]   An Online Coupled Dictionary Learning Approach for Remote Sensing Image Fusion [J].
Guo, Min ;
Zhang, Hongyan ;
Li, Jiayi ;
Zhang, Liangpei ;
Shen, Huanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) :1284-1294