Recent advances and challenges of rare variant association analysis in the biobank sequencing era

被引:21
作者
Chen, Wenan [1 ]
Coombes, Brandon J. J. [2 ]
Larson, Nicholas B. B. [2 ]
机构
[1] St Jude Childrens Res Hosp, Ctr Appl Bioinformat, Memphis, TN 38105 USA
[2] Mayo Clin, Dept Quantitat Hlth Sci, Rochester, MN 55905 USA
关键词
rare variant; sequencing data; variant annotations; population structure; external controls; family-based design; complex phenotypes; case-control; POPULATION-STRUCTURE; DISEQUILIBRIUM TEST; GENOME; TESTS; GENE; ROBUST; COMMON; TRAITS; METAANALYSIS; STATISTICS;
D O I
10.3389/fgene.2022.1014947
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Causal variants for rare genetic diseases are often rare in the general population. Rare variants may also contribute to common complex traits and can have much larger per-allele effect sizes than common variants, although power to detect these associations can be limited. Sequencing costs have steadily declined with technological advancements, making it feasible to adopt whole-exome and whole-genome profiling for large biobank-scale sample sizes. These large amounts of sequencing data provide both opportunities and challenges for rare-variant association analysis. Herein, we review the basic concepts of rare-variant analysis methods, the current state-of-the-art methods in utilizing variant annotations or external controls to improve the statistical power, and particular challenges facing rare variant analysis such as accounting for population structure, extremely unbalanced case-control design. We also review recent advances and challenges in rare variant analysis for familial sequencing data and for more complex phenotypes such as survival data. Finally, we discuss other potential directions for further methodology investigation.
引用
收藏
页数:14
相关论文
共 104 条
[11]   Sequence Kernel Association Test for Survival Traits [J].
Chen, Han ;
Lumley, Thomas ;
Brody, Jennifer ;
Heard-Costa, Nancy L. ;
Fox, Caroline S. ;
Cupples, L. Adrienne ;
Dupuis, Josee .
GENETIC EPIDEMIOLOGY, 2014, 38 (03) :191-197
[12]   Sequence Kernel Association Test for Quantitative Traits in Family Samples [J].
Chen, Han ;
Meigs, James B. ;
Dupuis, Josee .
GENETIC EPIDEMIOLOGY, 2013, 37 (02) :196-204
[13]   A haplotype-based framework for group-wise transmission/disequilibrium tests for rare variant association analysis [J].
Chen, Rui ;
Wei, Qiang ;
Zhan, Xiaowei ;
Zhong, Xue ;
Sutcliffe, James S. ;
Cox, Nancy J. ;
Cook, Edwin H. ;
Li, Chun ;
Chen, Wei ;
Li, Bingshan .
BIOINFORMATICS, 2015, 31 (09) :1452-1459
[14]   Analysis in case-control sequencing association studies with different sequencing depths [J].
Chen, Sixing ;
Lin, Xihong .
BIOSTATISTICS, 2020, 21 (03) :577-593
[15]   A rare variant analysis framework using public genotype summary counts to prioritize disease-predisposition genes [J].
Chen, Wenan ;
Wang, Shuoguo ;
Tithi, Saima Sultana ;
Ellison, David W. ;
Schaid, Daniel J. ;
Wu, Gang .
NATURE COMMUNICATIONS, 2022, 13 (01)
[16]   Rare variant association tests for ancestry-matched case-control data based on conditional logistic regression [J].
Cheng, Shanshan ;
Lyu, Jingjing ;
Shi, Xian ;
Wang, Kai ;
Wang, Zengmiao ;
Deng, Minghua ;
Sun, Baoluo ;
Wang, Chaolong .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
[17]   FARVAT: a family-based rare variant association test [J].
Choi, Sungkyoung ;
Lee, Sungyoung ;
Cichon, Sven ;
Noethen, Markus M. ;
Lange, Christoph ;
Park, Taesung ;
Won, Sungho .
BIOINFORMATICS, 2014, 30 (22) :3197-3205
[18]   A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 [J].
Cingolani, Pablo ;
Platts, Adrian ;
Wang, Le Lily ;
Coon, Melissa ;
Tung Nguyen ;
Wang, Luan ;
Land, Susan J. ;
Lu, Xiangyi ;
Ruden, Douglas M. .
FLY, 2012, 6 (02) :80-92
[19]   Rare Variant Analysis for Family-Based Design [J].
De, Gourab ;
Yip, Wai-Ki ;
Ionita-Laza, Iuliana ;
Laird, Nan .
PLOS ONE, 2013, 8 (01)
[20]   Association analysis using next-generation sequence data from publicly available control groups: the robust variance score statistic [J].
Derkach, Andriy ;
Chiang, Theodore ;
Gong, Jiafen ;
Addis, Laura ;
Dobbins, Sara ;
Tomlinson, Ian ;
Houlston, Richard ;
Pal, Deb K. ;
Strug, Lisa J. .
BIOINFORMATICS, 2014, 30 (15) :2179-2188