Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour

被引:10
|
作者
Udoro, Elohor Oghenechavwuko [1 ,2 ]
Anyasi, Tonna Ashim [1 ,3 ]
Jideani, Afam Israel Obiefuna [1 ,4 ]
机构
[1] Univ Venda, Fac Sci Engn & Agr, Dept Food Sci & Technol, ZA-0950 Thohoyandou, South Africa
[2] Akanu Ibiam Fed Polytech, Sch Ind Technol, Dept Food Technol, Afikpo Unwana 490102, Nigeria
[3] Agr Res Council Trop & Subtrop Crops, Agroproc & Postharvest Technol Div, Private Bag X11208, ZA-1200 Nelspruit, South Africa
[4] ISEKI Food Assoc, Special Interest Grp Post Harvest Handling, Muthgasse 18, A-1190 Vienna, Austria
基金
新加坡国家研究基金会;
关键词
cassava; processing variables; cassava utilization; flour; starch; tuber crops; POSTHARVEST PHYSIOLOGICAL DETERIORATION; MEDIUM-CYANIDE VARIETY; PHYSICOCHEMICAL PROPERTIES; PHYSICAL-PROPERTIES; CHEMICAL-PROPERTIES; BIOCHEMICAL-CHANGES; PACKAGING MATERIALS; BREAD-MAKING; WHEAT FLOUR; TME; 419;
D O I
10.3390/pr9111891
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cassava flour (CF) is a suitable representative and one of the easiest shelf-stable food products of the edible portion of the highly perishable cassava root (Manihot esculenta Crantz). The quality and type of CF are dependent on processing variables. Broadly categorized into fermented and unfermented CF, unfermented CF is white, odorless, and bland, while fermented CF has a sour flavor accompanied by its characteristic odor. The use of fermented CF as a composite is limited because of their off-odors. Modifications in CF processing have given rise to prefixes such as: modified, unmodified, gelatinized, fortified, native, roasted, malted, wet, and dry. Consumed alone, mostly in reconstituted dough form with soups, CF may also serve as a composite in the processing of various flour-based food products. Fermenting with microorganisms such as Rhizopus oryzae and Saccharomyces cerevisiae results in a significant increase in the protein content and a decrease in the cyanide content of CF. However, there are concerns regarding its safety for consumption. Pre-gelatinized CF has potential for the textural and structural improvement of bakery products. The average particle size of the CF also influences its functional properties and, subsequently, the quality of its products. Cassava flour is best stored at ambient temperature. Standardizing the processing of CF is a challenge because it is mostly processed in artisanal units. Furthermore, each variety of the root best suits a particular application. Therefore, understanding the influence of processing variables on the characteristics of CF may improve the utilization of CF locally and globally.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Localization of mercury and gold in cassava (Manihot esculenta Crantz)
    Hannah Joy P. Alcantara
    Fernando Jativa
    Augustine I. Doronila
    Christopher W. N. Anderson
    Rainer Siegele
    Tony G. Spassov
    Jose T. Sanchez-Palacios
    Berin A. Boughton
    Spas D. Kolev
    Environmental Science and Pollution Research, 2020, 27 : 18498 - 18509
  • [32] The closest wild relatives of cassava ( Manihot esculenta Crantz)
    Antonio C. Allem
    Euphytica, 1999, 107 : 123 - 133
  • [33] Study on cold hardiness of Cassava (Manihot esculenta Crantz)
    Ma, GH
    Xian, YL
    Li, MR
    Guo, JY
    TROPICAL AGRICULTURE, 1997, 74 (01): : 45 - 48
  • [34] Induction of a productive aneuploid in cassava, Manihot esculenta Crantz
    Nassar, NMA
    Nassar, HN
    Carvalho, CG
    Vieira, C
    BRAZILIAN JOURNAL OF GENETICS, 1996, 19 (01): : 123 - 125
  • [35] Evidence for spontaneous polyploidization in cassava Manihot esculenta Crantz
    Julie Sardos
    Marguerite Rodier-Goud
    Dominique Dambier
    Roger Malapa
    Jean-Louis Noyer
    Vincent Lebot
    Plant Systematics and Evolution, 2009, 283 : 203 - 209
  • [36] Localization of mercury and gold in cassava (Manihot esculenta Crantz)
    Alcantara, Hannah Joy P.
    Jativa, Fernando
    Doronila, Augustine I.
    Anderson, Christopher W. N.
    Siegele, Rainer
    Spassov, Tony G.
    Sanchez-Palacios, Jose T.
    Boughton, Berin A.
    Kolev, Spas D.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (15) : 18498 - 18509
  • [37] INVITRO FLOWERING IN CASSAVA (MANIHOT-ESCULENTA CRANTZ)
    TANG, AF
    CAPPADOCIA, M
    BYRNE, D
    PLANT CELL TISSUE AND ORGAN CULTURE, 1983, 2 (03) : 199 - 206
  • [38] CYANOGENIC GLYCOSIDES IN CASSAVA, MANIHOT-ESCULENTA CRANTZ
    LYKKESFELDT, J
    MOLLER, BL
    ACTA CHEMICA SCANDINAVICA, 1994, 48 (02): : 178 - 180
  • [39] ENRICHMENT OF NUTRIENT QUALITY OF CASSAVA (MANIHOT-ESCULENTA CRANTZ) WITH MICROBIAL PROTEINS
    ANTAI, SP
    PLANT FOODS FOR HUMAN NUTRITION, 1990, 40 (04) : 289 - 296
  • [40] PHYSIOLOGICAL STUDIES OF CASSAVA (MANIHOT-ESCULENTA CRANTZ)
    PEREIRA, JF
    SPLITTSTOESSER, WE
    PLANT PHYSIOLOGY, 1976, 57 (05) : 6 - 6