A Rayleigh Quotient-Based Recursive Total-Least-Squares Online Maximum Capacity Estimation for Lithium-Ion Batteries

被引:47
作者
Kim, Taesic [1 ]
Wang, Yebin [1 ]
Sahinoglu, Zafer [1 ]
Wada, Toshihiro [2 ]
Hara, Satoshi
Qiao, Wei [3 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Mitsubishi Electr Corp, Adv Technol R&D Ctr, Amagasaki, Hyogo 6618661, Japan
[3] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
关键词
Lithium-ion battery; online capacity estimation; Rayleigh quotient; recursive total least squares; state of health; EXTENDED KALMAN FILTER; MANAGEMENT-SYSTEMS; HEALTH DETERMINATION; SOH ESTIMATION; PART; STATE; MODEL; ALGORITHM; MATRIX; PACKS;
D O I
10.1109/TEC.2015.2424673
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The maximum capacity, the amount of maximal electric charge that a battery can store, not only indicates the state of health, but also is required in numerous methods for state-of-charge estimation. This paper proposes an alternative approach to perform online estimation of the maximum capacity by solving the recursive total-least-squares (RTLS) problem. Different from prior art, the proposed approach poses and solves the RTLS as a Rayleigh quotient optimization problem. The Rayleigh quotient-based approach can be readily generalized to other parameter estimation problems including impedance estimation. Compared with other capacity estimation methods, the proposed algorithm enjoys the advantages of existing RTLS-based algorithms for instance, low computation, simple implementation, and high accuracy, and thus is suitable for use in real-time embedded battery management systems. The proposed method is compared with existing methods via simulations and experiments.
引用
收藏
页码:842 / 851
页数:10
相关论文
共 50 条
  • [1] Online Estimation of an Electric Vehicle Lithium-Ion Battery Using Recursive Least Squares with Forgetting
    Hu Xiaosong
    Sun Fengchun
    Zou Yuan
    Peng Huei
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 935 - 940
  • [2] Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter
    Xia, Bizhong
    Lao, Zizhou
    Zhang, Ruifeng
    Tian, Yong
    Chen, Guanghao
    Sun, Zhen
    Wang, Wei
    Sun, Wei
    Lai, Yongzhi
    Wang, Mingwang
    Wang, Huawen
    ENERGIES, 2018, 11 (01):
  • [3] A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares
    Lao, Zizhou
    Xia, Bizhong
    Wang, Wei
    Sun, Wei
    Lai, Yongzhi
    Wang, Mingwang
    ENERGIES, 2018, 11 (06):
  • [4] Random forest regression for online capacity estimation of lithium-ion batteries
    Li, Yi
    Zou, Changfu
    Berecibar, Maitane
    Nanini-Maury, Elise
    Chan, Jonathan C. -W.
    van den Bossche, Peter
    Van Mierlo, Joeri
    Omar, Noshin
    APPLIED ENERGY, 2018, 232 : 197 - 210
  • [5] A deep learning method for online capacity estimation of lithium-ion batteries
    Shen, Sheng
    Sadoughi, Mohammadkazem
    Chen, Xiangyi
    Hong, Mingyi
    Hu, Chao
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [6] Online state of charge estimation of lithium-ion batteries: A moving horizon estimation approach
    Shen, Jia-Ni
    He, Yi-Jun
    Ma, Zi-Feng
    Luo, Hong-Bin
    Zhang, Zi-Feng
    CHEMICAL ENGINEERING SCIENCE, 2016, 154 : 42 - 53
  • [7] SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model
    Zhang, Ji'ang
    Wang, Ping
    Gong, Qingrui
    Cheng, Ze
    JOURNAL OF POWER ELECTRONICS, 2021, 21 (11) : 1712 - 1723
  • [8] Recursive approximate weighted total least squares estimation of battery cell total capacity
    Plett, Gregory L.
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 2319 - 2331
  • [9] Online Capacity Estimation of Lithium-ion Batteries by Partial Incremental Capacity Curve
    Wang, Yixiu
    Zhu, Jiangong
    Cao, Liang
    Gopaluni, Bhushan
    Cao, Yankai
    2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [10] An Improved Recursive Total Least Squares Estimation of Capacity for Electric Vehicle Lithium-Iron Phosphate Batteries
    Wang, Shaohua
    Yang, Yue
    Guo, Konghui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)