Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI

被引:2
|
作者
Karimi, Davood [1 ,2 ]
Gholipour, Ali [1 ,2 ]
机构
[1] Boston Childrens Hosp, Dept Radiol, Computat Radiol Lab, Boston, MA USA
[2] Harvard Med Sch, Boston, MA USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I | 2022年 / 13431卷
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
Deep learning; Atlas; Estimation; Diffusion MRI; WHITE-MATTER; TENSOR; CONSTRUCTION; OPTIMIZATION;
D O I
10.1007/978-3-031-16431-6_12
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning has a great potential for estimating biomarkers in diffusion weighted magnetic resonance imaging (dMRI). Atlases, on the other hand, are a unique tool for modeling the spatio-temporal variability of biomarkers. In this paper, we propose the first framework to exploit both deep learning and atlases for biomarker estimation in dMRI. Our framework relies on non-linear diffusion tensor registration to compute biomarker atlases and to estimate atlas reliability maps. We also use non-linear tensor registration to align the atlas to a subject and to estimate the error of this alignment. We use the biomarker atlas, atlas reliability map, and alignment error map, in addition to the dMRI signal, as inputs to a deep learning model for biomarker estimation. We use our framework to estimate fractional anisotropy and neurite orientation dispersion from down-sampled dMRI data on a test cohort of 70 newborn subjects. Results show that our method significantly outperforms standard estimation methods as well as recent deep learning techniques. Our method is also more robust to higher measurement down-sampling factors. Our study shows that the advantages of deep learning and atlases can be synergistically combined to achieve unprecedented biomarker estimation accuracy in dMRI.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [41] Deep learning reconstruction in pediatric brain MRI: comparison of image quality with conventional T2-weighted MRI
    Soo-Hyun Kim
    Young Hun Choi
    Joon Sung Lee
    Seul Bi Lee
    Yeon Jin Cho
    Seung Hyun Lee
    Su-Mi Shin
    Jung-Eun Cheon
    Neuroradiology, 2023, 65 : 207 - 214
  • [42] Deep Learning Framework for Liver Segmentation from T1-Weighted MRI Images
    Hossain, Md. Sakib Abrar
    Gul, Sidra
    Chowdhury, Muhammad E. H.
    Khan, Muhammad Salman
    Sumon, Md. Shaheenur Islam
    Bhuiyan, Enamul Haque
    Khandakar, Amith
    Hossain, Maqsud
    Sadique, Abdus
    Al-Hashimi, Israa
    Ayari, Mohamed Arselene
    Mahmud, Sakib
    Alqahtani, Abdulrahman
    Kang, Dae-Ki
    SENSORS, 2023, 23 (21)
  • [43] Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI
    Hong Liu
    Menglei Jiao
    Yuan Yuan
    Hanqiang Ouyang
    Jianfang Liu
    Yuan Li
    Chunjie Wang
    Ning Lang
    Yueliang Qian
    Liang Jiang
    Huishu Yuan
    Xiangdong Wang
    Insights into Imaging, 13
  • [44] Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI
    Liu, Hong
    Jiao, Menglei
    Yuan, Yuan
    Ouyang, Hanqiang
    Liu, Jianfang
    Li, Yuan
    Wang, Chunjie
    Lang, Ning
    Qian, Yueliang
    Jiang, Liang
    Yuan, Huishu
    Wang, Xiangdong
    INSIGHTS INTO IMAGING, 2022, 13 (01)
  • [45] Deep learning-based k-space-to-image reconstruction and super resolution for diffusion-weighted imaging in whole-spine MRI
    Kim, Dong Kyun
    Lee, So-Yeon
    Lee, Jinyoung
    Huh, Yeon Jong
    Lee, Seungeun
    Lee, Sungwon
    Jung, Joon-Yong
    Lee, Hyun-Soo
    Benkert, Thomas
    Park, Sung-Hong
    MAGNETIC RESONANCE IMAGING, 2024, 105 : 82 - 91
  • [46] Accelerated Diffusion-Weighted Imaging in 3 T Breast MRI Using a Deep Learning Reconstruction Algorithm With Superresolution Processing: A Prospective Comparative Study
    Wilpert, Caroline
    Neubauer, Claudia
    Rau, Alexander
    Schneider, Hannah
    Benkert, Thomas
    Weiland, Elisabeth
    Strecker, Ralph
    Reisert, Marco
    Benndorf, Matthias
    Weiss, Jakob
    Bamberg, Fabian
    Windfuhr-Blum, Marisa
    Neubauer, Jakob
    INVESTIGATIVE RADIOLOGY, 2023, 58 (12) : 842 - 852
  • [47] DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2-Weighted MRI
    Genc, Ozan
    Morrison, Melanie A.
    Villanueva-Meyer, Javier E.
    Burns, Brian
    Hess, Christopher P.
    Banerjee, Suchandrima
    Lupo, Janine M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (04) : 1200 - 1210
  • [48] Eddeep: Fast Eddy-Current Distortion Correction for Diffusion MRI with Deep Learning
    Legouhy, Antoine
    Callaghan, Ross
    Stee, Whitney
    Peigneux, Philippe
    Azadbakht, Hojjat
    Zhang, Hui
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II, 2024, 15002 : 152 - 161
  • [49] Unsupervised Deep Learning for FOD-Based Susceptibility Distortion Correction in Diffusion MRI
    Qiao, Yuchuan
    Shi, Yonggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (05) : 1165 - 1175
  • [50] A DEEP-LEARNING FRAMEWORK FOR ESTIMATING THE POSTERIOR DISTRIBUTION OF THE STANDARD MODEL OF DIFFUSION MRI
    Karimi, Hazhar Sufi
    Ning, Lipeng
    Rathi, Yogesh
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,