Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI

被引:2
|
作者
Karimi, Davood [1 ,2 ]
Gholipour, Ali [1 ,2 ]
机构
[1] Boston Childrens Hosp, Dept Radiol, Computat Radiol Lab, Boston, MA USA
[2] Harvard Med Sch, Boston, MA USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I | 2022年 / 13431卷
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
Deep learning; Atlas; Estimation; Diffusion MRI; WHITE-MATTER; TENSOR; CONSTRUCTION; OPTIMIZATION;
D O I
10.1007/978-3-031-16431-6_12
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning has a great potential for estimating biomarkers in diffusion weighted magnetic resonance imaging (dMRI). Atlases, on the other hand, are a unique tool for modeling the spatio-temporal variability of biomarkers. In this paper, we propose the first framework to exploit both deep learning and atlases for biomarker estimation in dMRI. Our framework relies on non-linear diffusion tensor registration to compute biomarker atlases and to estimate atlas reliability maps. We also use non-linear tensor registration to align the atlas to a subject and to estimate the error of this alignment. We use the biomarker atlas, atlas reliability map, and alignment error map, in addition to the dMRI signal, as inputs to a deep learning model for biomarker estimation. We use our framework to estimate fractional anisotropy and neurite orientation dispersion from down-sampled dMRI data on a test cohort of 70 newborn subjects. Results show that our method significantly outperforms standard estimation methods as well as recent deep learning techniques. Our method is also more robust to higher measurement down-sampling factors. Our study shows that the advantages of deep learning and atlases can be synergistically combined to achieve unprecedented biomarker estimation accuracy in dMRI.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [21] Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI
    Tanno, Ryutaro
    Worrall, Daniel E.
    Kaden, Enrico
    Ghosh, Aurobrata
    Grussu, Francesco
    Bizzi, Alberto
    Sotiropoulos, Stamatios N.
    Criminisi, Antonio
    Alexander, Daniel C.
    NEUROIMAGE, 2021, 225
  • [22] Image quality and diagnostic performance of deep learning reconstruction for diffusion- weighted imaging in 3 T breast MRI
    Lee, Eun Ji
    Chang, Yun-Woo
    Lee, Eun Hye
    Cha, Jang Gyu
    Kim, Shin Young
    Choi, Nami
    Paek, Munyoung
    Darwish, Omar
    EUROPEAN JOURNAL OF RADIOLOGY, 2025, 185
  • [23] Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI
    Nath, Vishwesh
    Schilling, Kurt G.
    Parvathaneni, Prasanna
    Hansen, Colin B.
    Hainline, Allison E.
    Huo, Yuankai
    Blaber, Justin A.
    Lyu, Ilwoo
    Janve, Vaibhav
    Gao, Yurui
    Stepniewska, Iwona
    Anderson, Adam W.
    Landman, Bennett A.
    MAGNETIC RESONANCE IMAGING, 2019, 62 : 220 - 227
  • [24] Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions
    Chen, Geng
    Hong, Yoonmi
    Huynh, Khoi Minh
    Yap, Pew-Thian
    MEDICAL IMAGE ANALYSIS, 2023, 85
  • [25] Multiple Types of Cancer Classification Using CT/MRI Images Based on Learning Without Forgetting Powered Deep Learning Models
    Subramanian, Malliga
    Cho, Jaehyuk
    Sathishkumar, Veerappampalayam Easwaramoorthy
    Naren, Obuli Sai
    IEEE ACCESS, 2023, 11 : 10336 - 10354
  • [26] Diffusion-weighted MRI with deep learning for visualizing treatment results of MR-guided HIFU ablation of uterine fibroids
    Derk J. Slotman
    Lambertus W. Bartels
    Aylene Zijlstra
    Inez M. Verpalen
    Jochen A. C. van Osch
    Ingrid M. Nijholt
    Edwin Heijman
    Miranda van ‘t Veer-ten Kate
    Erwin de Boer
    Rolf D. van den Hoed
    Martijn Froeling
    Martijn F. Boomsma
    European Radiology, 2023, 33 : 4178 - 4188
  • [27] Diffusion-weighted MRI with deep learning for visualizing treatment results of MR-guided HIFU ablation of uterine fibroids
    Slotman, Derk J.
    Bartels, Lambertus W.
    Zijlstra, Aylene
    Verpalen, Inez M.
    van Osch, Jochen A. C.
    Nijholt, Ingrid M.
    Heijman, Edwin
    van 't Veer-ten Kate, Miranda
    de Boer, Erwin
    van den Hoed, Rolf D.
    Froeling, Martijn
    Boomsma, Martijn F.
    EUROPEAN RADIOLOGY, 2023, 33 (06) : 4178 - 4188
  • [28] Discrimination Between Glioblastoma and Solitary Brain Metastasis Using Conventional MRI and Diffusion-Weighted Imaging Based on a Deep Learning Algorithm
    Qingqing Yan
    Fuyan Li
    Yi Cui
    Yong Wang
    Xiao Wang
    Wenjing Jia
    Xinhui Liu
    Yuting Li
    Huan Chang
    Feng Shi
    Yuwei Xia
    Qing Zhou
    Qingshi Zeng
    Journal of Digital Imaging, 2023, 36 : 1480 - 1488
  • [29] ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep learning
    Chatterjee, Soumick
    Sciarra, Alessandro
    Duennwald, Max
    Mushunuri, Raghava Vinaykanth
    Podishetti, Ranadheer
    Rao, Rajatha Nagaraja
    Gopinath, Geetha Doddapaneni
    Oeltze-Jafra, Steffen
    Speck, Oliver
    Nuernberger, Andreas
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 940 - 944
  • [30] Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI
    Karimi, Davood
    Vasung, Lana
    Jaimes, Camilo
    Machado-Rivas, Fedel
    Warfield, Simon K.
    Gholipour, Ali
    NEUROIMAGE, 2021, 239