Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI

被引:2
|
作者
Karimi, Davood [1 ,2 ]
Gholipour, Ali [1 ,2 ]
机构
[1] Boston Childrens Hosp, Dept Radiol, Computat Radiol Lab, Boston, MA USA
[2] Harvard Med Sch, Boston, MA USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I | 2022年 / 13431卷
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
Deep learning; Atlas; Estimation; Diffusion MRI; WHITE-MATTER; TENSOR; CONSTRUCTION; OPTIMIZATION;
D O I
10.1007/978-3-031-16431-6_12
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning has a great potential for estimating biomarkers in diffusion weighted magnetic resonance imaging (dMRI). Atlases, on the other hand, are a unique tool for modeling the spatio-temporal variability of biomarkers. In this paper, we propose the first framework to exploit both deep learning and atlases for biomarker estimation in dMRI. Our framework relies on non-linear diffusion tensor registration to compute biomarker atlases and to estimate atlas reliability maps. We also use non-linear tensor registration to align the atlas to a subject and to estimate the error of this alignment. We use the biomarker atlas, atlas reliability map, and alignment error map, in addition to the dMRI signal, as inputs to a deep learning model for biomarker estimation. We use our framework to estimate fractional anisotropy and neurite orientation dispersion from down-sampled dMRI data on a test cohort of 70 newborn subjects. Results show that our method significantly outperforms standard estimation methods as well as recent deep learning techniques. Our method is also more robust to higher measurement down-sampling factors. Our study shows that the advantages of deep learning and atlases can be synergistically combined to achieve unprecedented biomarker estimation accuracy in dMRI.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [1] Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration
    Zhang, Fan
    Wells, William M., III
    O'Donnell, Lauren J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) : 1454 - 1467
  • [2] Radiomics and deep learning of diffusion-weighted MRI in the diagnosis of breast cancer
    Hu, Qiyuan
    Whitney, Heather M.
    Edwards, Alexandra
    Papaioannou, John
    Giger, Maryellen L.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [3] Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning
    Caohui Duan
    He Deng
    Sa Xiao
    Junshuai Xie
    Haidong Li
    Xiuchao Zhao
    Dongshan Han
    Xianping Sun
    Xin Lou
    Chaohui Ye
    Xin Zhou
    European Radiology, 2022, 32 : 702 - 713
  • [4] Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning
    Duan, Caohui
    Deng, He
    Xiao, Sa
    Xie, Junshuai
    Li, Haidong
    Zhao, Xiuchao
    Han, Dongshan
    Sun, Xianping
    Lou, Xin
    Ye, Chaohui
    Zhou, Xin
    EUROPEAN RADIOLOGY, 2022, 32 (01) : 702 - 713
  • [5] Minimizing prostate diffusion weighted MRI examination time through deep learning reconstruction
    Cochran, Rory L.
    Milshteyn, Eugene
    Ghosh, Soumyadeep
    Nakrour, Nabih
    Mercaldo, Nathaniel D.
    Guidon, Arnaud
    Harisinghani, Mukesh G.
    CLINICAL IMAGING, 2025, 117
  • [6] Deep learning-based parameter estimation in fetal diffusion-weighted MRI
    Karimi, Davood
    Jaimes, Camilo
    Machado-Rivas, Fedel
    Vasung, Lana
    Khan, Shadab
    Warfield, Simon K.
    Gholipour, Ali
    NEUROIMAGE, 2021, 243
  • [7] Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies
    Aja-Fernandez, Santiago
    Martin-Martin, Carmen
    Planchuelo-Gomez, Alvaro
    Faiyaz, Abrar
    Uddin, Md Nasir
    Schifitto, Giovanni
    Tiwari, Abhishek
    Shigwan, Saurabh J.
    Singh, Rajeev Kumar
    Zheng, Tianshu
    Cao, Zuozhen
    Wu, Dan
    Blumberg, Stefano B.
    Sen, Snigdha
    Goodwin-Allcock, Tobias
    Slator, Paddy J.
    Avci, Mehmet Yigit
    Li, Zihan
    Bilgic, Berkin
    Tian, Qiyuan
    Wang, Xinyi
    Tang, Zihao
    Cabezas, Mariano
    Rauland, Amelie
    Merhof, Dorit
    Maria, Renata Manzano
    Campos, Vinicius Paraniba
    Santini, Tales
    Vieira, Marcelo Andrade da Costa
    Hashemizadehkolowri, Seyyedkazem
    Dibella, Edward
    Peng, Chenxu
    Shen, Zhimin
    Chen, Zan
    Ullah, Irfan
    Mani, Merry
    Abdolmotalleby, Hesam
    Eckstrom, Samuel
    Baete, Steven H.
    Filipiak, Patryk
    Dong, Tanxin
    Fan, Qiuyun
    de Luis-Garcia, Rodrigo
    Tristan-Vega, Antonio
    Pieciak, Tomasz
    NEUROIMAGE-CLINICAL, 2023, 39
  • [8] Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark
    Pinheiro, Gustavo Retuci
    Brusini, Lorenza
    Carmo, Diedre
    Proa, Renata
    Abreu, Thays
    Appenzeller, Simone
    Menegaz, Gloria
    Rittner, Leticia
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [9] Deep learning assisted atlas-based delineation of the skeleton from Whole-Body Diffusion Weighted MRI in patients with malignant bone disease
    Candito, Antonio
    Holbrey, Richard
    Ribeiro, Ana
    Dragan, Alina
    Messiou, Christina
    Tunariu, Nina
    Blackledge, Matthew D.
    Koh, Dow-Mu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [10] Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI
    Barbieri, Sebastiano
    Gurney-Champion, Oliver J.
    Klaassen, Remy
    Thoeny, Harriet C.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (01) : 312 - 321