Positron annihilation study of 4H-SiC by Ge+ implantation and subsequent thermal annealing

被引:9
|
作者
Yu, R. S. [1 ]
Maekawa, M. [2 ]
Kawasuso, A. [2 ]
Wang, B. Y. [1 ]
Wei, L. [1 ]
机构
[1] Chinese Acad Sci, Key Lab Nucl Anal Tech, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Japan Atom Energy Agcy, Adv Sci Res Ctr, Takasaki, Gunma 3701292, Japan
关键词
Positron annihilation; Defects; 4H-SiC; NANOCRYSTAL FORMATION; ION-IMPLANTATION; ELECTRON;
D O I
10.1016/j.nimb.2011.10.006
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Positron annihilation in 800 key Ge+ implanted hexagonal SiC was studied by thermal annealing at temperatures ranging from 800 to 1400 degrees C. The variation in Doppler broadening S values as a function of the incident positron energy suggests a broad distribution in the depth of vacancy defects in the implanted samples. Increasing the annealing temperature triggers the accumulation of vacancies into vacancy clusters. After annealing at 1400 degrees C, defects in the deep region of SiC are eliminated, and Ge precipitation is believed to appear in the sample at the same time. Though Ge has a much more negative positron affinity than SiC, positron annihilation coincidence Doppler broadening measurement reveals that a preferential trapping of positrons in Ge seems impossible. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 49
页数:3
相关论文
共 50 条
  • [31] Study of the different stages of damage induced by 200 keV Ge+ ion implantation in 6H-SiC
    Pacaud, Y
    Brauer, G
    PerezRodriguez, A
    Stoemenos, J
    Barklie, R
    Voelskow, M
    Skorupa, W
    SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 : 537 - 540
  • [32] Properties of Ge nanocrystals formed by implantation of Ge+ ions into SiO2 films with subsequent annealing under hydrostatic pressure
    I. E. Tyschenko
    A. B. Talochkin
    A. G. Cherkov
    K. S. Zhuravlev
    A. Misiuk
    M. Voelskow
    W. Skorupa
    Semiconductors, 2003, 37 : 462 - 467
  • [33] 1950°C Post Implantation Annealing of Al+ Implanted 4H-SiC: Relevance of the Annealing Time
    Fedeli, P.
    Gorni, M.
    Carnera, A.
    Parisini, A.
    Alfieri, G.
    Grossner, U.
    Nipoti, R.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2016, 5 (09) : P534 - P539
  • [34] Elevated temperature Ge implantation into Si and the effect of subsequent thermal annealing
    Wong, WC
    Elliman, RG
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1995, 106 (1-4): : 271 - 276
  • [35] Ion implantation damage annealing in 4H-SiC monitored by scanning spreading resistance microscopy
    Suchodolskis, A.
    Hallen, A.
    Linnarsson, M. K.
    Osterman, J.
    Karlsson, U. O.
    THIN SOLID FILMS, 2006, 515 (02) : 611 - 614
  • [36] Effects of annealing on carrier lifetime in 4H-SiC
    Jenny, J.R.
    Malta, D.P.
    Tsvetkov, V.F.
    Das, M.K.
    Hobgood, H.Mcd.
    Carter Jr., C.H.
    Kumar, R.J.
    Borrego, J.M.
    Gutmann, R.J.
    Aavikko, R.
    Journal of Applied Physics, 2006, 100 (11):
  • [37] The role of nitrogen in the annealing of vacancies in 4H-SiC
    Dannefaer, S
    Avalos, V
    Yakimova, R
    SILICON CARBIDE AND RELATED MATERIALS 2004, 2005, 483 : 481 - 484
  • [38] Recombination enhanced defect annealing in 4H-SiC
    Storasta, L
    Carlsson, FHC
    Bergman, JP
    Janzén, E
    SILICON CARBIDE AND RELATED MATERIALS 2004, 2005, 483 : 369 - 372
  • [39] Microwave Annealing of Ion Implanted 4H-SiC
    Rao, Mulpuri V.
    Nath, A.
    Qadri, S. B.
    Tian, Y-L.
    Nipoti, R.
    ION IMPLANTATION TECHNOLOGY 2010, 2010, 1321 : 241 - +
  • [40] Effects of annealing on carrier lifetime in 4H-SiC
    Jenny, J. R.
    Malta, D. P.
    Tsvetkov, V. F.
    Das, M. K.
    Hobgood, H. McD.
    Carter, C. H., Jr.
    Kumar, R. J.
    Borrego, J. M.
    Gutmann, R. J.
    Aavikko, R.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)