The smallest chimera state for coupled pendula

被引:56
作者
Wojewoda, Jerzy [1 ]
Czolczynski, Krzysztof [1 ]
Maistrenko, Yuri [1 ,2 ,3 ,4 ]
Kapitaniak, Tomasz [1 ]
机构
[1] Tech Univ Lodz, Div Dynam, Stefanowskiego 1-15, PL-90924 Lodz, Poland
[2] Natl Acad Sci Ukraine, Inst Math, Tereshchenkivska St 3, UA-01030 Kiev, Ukraine
[3] Natl Acad Sci Ukraine, Ctr Med & Biotech Res, Tereshchenkivska St 3, UA-01030 Kiev, Ukraine
[4] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
POPULATIONS;
D O I
10.1038/srep34329
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton's laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems.
引用
收藏
页数:5
相关论文
共 30 条
[1]   Solvable model for chimera states of coupled oscillators [J].
Abrams, Daniel M. ;
Mirollo, Rennie ;
Strogatz, Steven H. ;
Wiley, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[2]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[3]  
[Anonymous], COMMUNICATION
[4]   Weak chimeras in minimal networks of coupled phase oscillators [J].
Ashwin, Peter ;
Burylko, Oleksandr .
CHAOS, 2015, 25 (01)
[5]   Chaotic weak chimeras and their persistence in coupled populations of phase oscillators [J].
Bick, Christian ;
Ashwin, Peter .
NONLINEARITY, 2016, 29 (05) :1468-1486
[6]   Clustering and synchronization of n Huygens' clocks [J].
Czolczynski, K. ;
Perlikowski, P. ;
Stefanski, A. ;
Kapitaniak, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (24) :5013-5023
[7]   Different types of chimera states: An interplay between spatial and dynamical chaos [J].
Dudkowski, Dawid ;
Maistrenko, Yuri ;
Kapitaniak, Tomasz .
PHYSICAL REVIEW E, 2014, 90 (03)
[8]  
Hagerstrom AM, 2012, NAT PHYS, V8, P658, DOI [10.1038/nphys2372, 10.1038/NPHYS2372]
[9]   Chimera states on the route from coherence to rotating waves [J].
Jaros, Patrycja ;
Maistrenko, Yuri ;
Kapitaniak, Tomasz .
PHYSICAL REVIEW E, 2015, 91 (02)
[10]   Synchronization Thresholds of Coupled Self-Excited Nonidentical Pendula Suspended on the Vertically Displacing Beam [J].
Kapitaniak, Marcin ;
Brzeski, Piotr ;
Czolczynski, Krzysztof ;
Perlikowski, Przemyslaw ;
Stefanski, Andrzej ;
Kapitaniak, Tomasz .
PROGRESS OF THEORETICAL PHYSICS, 2012, 128 (06) :1141-1173