GENERAL STABILITY OF THE EXPONENTIAL AND LOBACEVSKII FUNCTIONAL EQUATIONS

被引:1
|
作者
Chung, Jaeyoung [1 ]
机构
[1] Kunsan Natl Univ, Dept Math, Kunsan 573701, South Korea
基金
新加坡国家研究基金会;
关键词
exponential functional equation; Lobacevskii functional equation; stability;
D O I
10.1017/S0004972716000095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a semigroup possibly with no identity and f : S -> C. We consider the general superstability of the exponential functional equation with a perturbation psi of mixed variables f(x + y) - f(x)f(y)vertical bar <= psi(x, y) for all x, y is an element of S. In particular, if S is a uniquely 2-divisible semigroup with an identity, we obtain the general superstability of Lobacevskii's functional equation with perturbation psi f(x + y/2)(2) - f(x)f(y)vertical bar <= psi(x, y) for all x, y is an element of S.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 50 条