On solid ergodicity for Gaussian actions

被引:13
作者
Boutonnet, Remi [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA UMR 5669, F-69364 Lyon 7, France
关键词
Equivalence relations; Strong ergodicity; Deformation/rigidity; W-RIGID GROUPS; MALLEABLE ACTIONS; II1; FACTORS; SUPERRIGIDITY; COCYCLE;
D O I
10.1016/j.jfa.2012.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Gaussian actions through the study of their crossed-product von Neumann algebra. The motivational result is Chifan and loana's ergodic decomposition theorem for Bernoulli actions (Chifan and Ioana, 2010 [4]) that we generalize to Gaussian actions (Theorem A). We also give general structural results (Theorems 3.4 and 3.8) that allow us to get a more accurate result at the level of von Neumann algebras. More precisely, for a large class of Gaussian actions Gamma curved right arrow X, we show that any subfactor N of L-infinity(X) (sic) Gamma containing L-infinity (X) is either hyperfinite or is non-Gamma and prime. At the end of the article, we show a similar result for Bogoliubov actions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1040 / 1063
页数:24
相关论文
共 29 条
[1]  
Bekka B., 2008, NEW MATH MONOGR, V11
[2]  
Brown N.P., 2008, C*-Algebras and Finite Dimensional Approximations, V88
[3]  
Cherix P.-A., 2001, PROGR MATH, V197
[4]   ERGODIC SUBEQUIVALENCE RELATIONS INDUCED BY A BERNOULLI ACTION [J].
Chifan, Ionut ;
Ioana, Adrian .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) :53-67
[5]  
COWLING M, 1988, J REINE ANGEW MATH, V387, P97
[6]  
Cowling M., 1979, Analyse Harmonique sur les Groupes de Lie II, V739, P132
[7]  
DELAHARPE P, 1995, INTRO C ALGEBRAS
[8]   ERGODIC EQUIVALENCE RELATIONS, COHOMOLOGY, AND VONNEUMANN ALGEBRAS .1. [J].
FELDMAN, J ;
MOORE, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) :289-324
[9]  
Gaboriau D, 2010, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, P1501
[10]   A measurable-group-theoretic solution to von Neumann's problem [J].
Gaboriau, Damien ;
Lyons, Russell .
INVENTIONES MATHEMATICAE, 2009, 177 (03) :533-540