High-strength silk protein scaffolds for bone repair

被引:312
作者
Mandal, Biman B. [1 ,2 ]
Grinberg, Ariela [1 ,3 ]
Gil, Eun Seok [1 ]
Panilaitis, Bruce [1 ]
Kaplan, David L. [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Indian Inst Technol, Dept Biotechnol, Gauhati 781039, India
[3] Natl Inst Rehabil, Dept Tissue Engn Cell Therapy & Regenerat Med, Mexico City 14389, DF, Mexico
基金
美国国家卫生研究院;
关键词
microfibers; composite scaffold; tissue engineering; osteogenesis; regenerative medicine; POLYMER-COMPOSITE-MATERIALS; MARROW STROMAL CELLS; FIBROIN 3D SCAFFOLDS; IN-VITRO; MECHANICAL-PROPERTIES; SURFACE-ROUGHNESS; 3-D SCAFFOLDS; STEM-CELLS; TISSUE; DIFFERENTIATION;
D O I
10.1073/pnas.1119474109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomaterials for bone tissue regeneration represent a major focus of orthopedic research. However, only a handful of polymeric biomaterials are utilized today because of their failure to address critical issues like compressive strength for load-bearing bone grafts. In this study development of a high compressive strength (similar to 13 MPa hydrated state) polymeric bone composite materials is reported, based on silk protein-protein interfacial bonding. Micron-sized silk fibers (10-600 mu m) obtained utilizing alkali hydrolysis were used as reinforcement in a compact fiber composite with tunable compressive strength, surface roughness, and porosity based on the fiber length included. A combination of surface roughness, porosity, and scaffold stiffness favored human bone marrow-derived mesenchymal stem cell differentiation toward bone-like tissue in vitro based on biochemical and gene expression for bone markers. Further, minimal in vivo immunomodulatory responses suggested compatibility of the fabricated silk-fiber-reinforced composite matrices for bone engineering applications.
引用
收藏
页码:7699 / 7704
页数:6
相关论文
共 60 条
[1]   Silk matrix for tissue engineered anterior cruciate ligaments [J].
Altman, GH ;
Horan, RL ;
Lu, HH ;
Moreau, J ;
Martin, I ;
Richmond, JC ;
Kaplan, DL .
BIOMATERIALS, 2002, 23 (20) :4131-4141
[2]  
Balloni S, 2009, INT J ORAL MAX IMPL, V24, P627
[4]   De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials [J].
Dal Pra, I ;
Freddi, G ;
Minic, J ;
Chiarini, A ;
Armato, U .
BIOMATERIALS, 2005, 26 (14) :1987-1999
[5]   Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells [J].
Dawson, Jonathan I. ;
Wahl, Denys A. ;
Lanham, Stuart A. ;
Kanczler, Janos M. ;
Czernuszka, Jan T. ;
Oreffo, Richard O. C. .
BIOMATERIALS, 2008, 29 (21) :3105-3116
[6]   Mechanics of the interface for carbon nanotube-polymer composites [J].
Desai, AV ;
Haque, MA .
THIN-WALLED STRUCTURES, 2005, 43 (11) :1787-1803
[7]   Tissue cells feel and respond to the stiffness of their substrate [J].
Discher, DE ;
Janmey, P ;
Wang, YL .
SCIENCE, 2005, 310 (5751) :1139-1143
[8]   Tissue engineering for bone defect heating: An update on a multi-component approach [J].
Drosse, Inga ;
Volkmer, Elias ;
Capanna, Rodolfo ;
De Biase, Pietro ;
Mutschler, Wolf ;
Schieker, Matthias .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2008, 39 :S9-S20
[9]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689
[10]   Bone sialoprotein [J].
Ganss, B ;
Kim, RH ;
Sodek, J .
CRITICAL REVIEWS IN ORAL BIOLOGY & MEDICINE, 1999, 10 (01) :79-98