Higher entropic uncertainty relations for anti-commuting observables

被引:46
作者
Wehner, Stephanie [1 ]
Winter, Andreas [2 ,3 ]
机构
[1] Ctr Wiskunde Informat, NL-1098 SJ Amsterdam, Netherlands
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[3] Natl Univ Singapore, Quantum Informat Technol Lab, Singapore 117542, Singapore
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2943685
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Uncertainty relations provide one of the most powerful formulations of the quantum mechanical principle of complementarity. Yet, very little is known about such uncertainty relations for more than two measurements. Here, we show that sufficient unbiasedness for a set of binary observables, in the sense of mutual anticommutation, is good enough to obtain maximally strong uncertainty relations in terms of the Shannon entropy. We also prove nearly optimal relations for the collision entropy. This is the first systematic and explicit approach to finding an arbitrary number of measurements for which we obtain maximally strong uncertainty relations. Our results have immediate applications to quantum cryptography. (c) 2008 American Institute of Physics.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Entropic uncertainty relations and locking: Tight bounds for mutually unbiased bases [J].
Ballester, Manuel A. ;
Wehner, Stephanie .
PHYSICAL REVIEW A, 2007, 75 (02)
[2]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[3]  
DAMGARD S, 2007, P CRYPTO UNPUB, P360
[4]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633
[5]   Generalized Bloch spheres for m-qubit states [J].
Dietz, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (06) :1433-1447
[6]   Locking classical correlations in quantum states [J].
DiVincenzo, DP ;
Horodecki, M ;
Leung, DW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 2004, 92 (06)
[7]  
Doran C., 2003, GEOMETRIC ALGEBRA PH, DOI [10.1017/CBO9780511807497, DOI 10.1017/CBO9780511807497]
[8]  
Fehr S., COMMUNICATION
[9]   Uncertainty principle and quantum fisher information. II. [J].
Gibilisco, Paolo ;
Imparato, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[10]  
Goldstein H., 2002, CLASSICAL MECH