Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models

被引:179
作者
Nurden, Alan T. [1 ]
Fiore, Mathieu [1 ]
Nurden, Paquita [1 ]
Pillois, Xavier [1 ]
机构
[1] Hop Xavier Arnozan, Ctr Reference Pathol Plaquettaires Plateforme Tec, F-33600 Pessac, France
关键词
GLYCOPROTEIN-IIB-IIIA; BETA(3) CYTOPLASMIC DOMAIN; DISULFIDE BOND DISRUPTION; ADHESION DEFICIENCY-III; CYSTEINE-RICH REPEAT; BETA-3; INTEGRIN; POINT MUTATION; LIGAND-BINDING; ALPHA-IIB; ALPHA-IIB-BETA-3;
D O I
10.1182/blood-2011-07-365635
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Characterized by mucocutaneous bleeding arising from a lack of platelet aggregation to physiologic stimuli, Glanzmann thrombasthenia (GT) is the archetype-inherited disorder of platelets. Transmitted by autosomal recessive inheritance, platelets in GT have quantitative or qualitative deficiencies of the fibrinogen receptor, alpha IIb beta 3, an integrin coded by the ITGA2B and ITGB3 genes. Despite advances in our understanding of the disease, extensive phenotypic variability with respect to severity and intensity of bleeding remains poorly understood. Importantly, genetic defects of ITGB3 also potentially affect other tissues, for beta 3 has a wide tissue distribution when present as alpha v beta 3 (the vitronectin receptor). We now look at the repertoire of ITGA2B and ITGB3 gene defects, reexamine the relationship between phenotype and genotype, and review integrin structure in the many variant forms. Evidence for modifications in platelet production is assessed, as is the multifactorial etiology of the clinical expression of the disease. Reports of cardiovascular disease and deep vein thrombosis, cancer, brain disease, bone disorders, and pregnancy defects in GT are discussed in the context of the results obtained for mouse models where nonhemostatic defects of beta 3-deficiency or nonfunction are being increasingly described. (Blood. 2011;118(23):5996-6005)
引用
收藏
页码:5996 / 6005
页数:10
相关论文
共 104 条
[81]   Accelerated re-epithelialization in β3-integrin-deficient mice is associated with enhanced TGF-β1 signaling [J].
Reynolds, LE ;
Conti, FJ ;
Lucas, M ;
Grose, R ;
Robinson, S ;
Stone, M ;
Saunders, G ;
Dickson, C ;
Hynes, RO ;
Lacy-Hulbert, A ;
Hodivala-Dilke, K .
NATURE MEDICINE, 2005, 11 (02) :167-174
[82]   Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins [J].
Reynolds, LE ;
Wyder, L ;
Lively, JC ;
Taverna, D ;
Robinson, SD ;
Huang, XZ ;
Sheppard, D ;
Hynes, O ;
Hodivala-Dilke, KM .
NATURE MEDICINE, 2002, 8 (01) :27-34
[83]   β3-integrin regulates vascular endothelial growth factor-A-dependent permeability [J].
Robinson, SD ;
Reynolds, LE ;
Wyder, L ;
Hicklin, DJ ;
Hodivala-Dilke, KM .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2004, 24 (11) :2108-2114
[84]   Thrombasthenic mice generated by replacement of the integrin αIIb gene:: demonstration that transcriptional activation of this megakaryocytic locus precedes lineage commitment [J].
Roux, DTL ;
Roullot, V ;
Poujol, C ;
Kortulewski, T ;
Nurden, P ;
Marguerie, G .
BLOOD, 2000, 96 (04) :1399-1408
[85]   A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (αIIbβ3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype [J].
Ruiz, C ;
Liu, CY ;
Sun, QH ;
Sigaud-Fiks, M ;
Fressinaud, E ;
Muller, JY ;
Nurden, P ;
Nurden, AT ;
Newman, PJ ;
Valentin, N .
BLOOD, 2001, 98 (08) :2432-2441
[86]   Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption [J].
Schmidt, Sarah ;
Nakchbandi, Inaam ;
Ruppert, Raphael ;
Kawelke, Nina ;
Hess, Michael W. ;
Pfaller, Kristian ;
Jurdic, Pierre ;
Faessler, Reinhard ;
Moser, Markus .
JOURNAL OF CELL BIOLOGY, 2011, 192 (05) :883-897
[87]   Macrophage β3 integrin suppresses hyperlipidemia-induced inflammation by modulating TNFα expression [J].
Schneider, Jochen G. ;
Zhu, Yimin ;
Coleman, Trey ;
Semenkovich, Clay F. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2007, 27 (12) :2699-2706
[88]   Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3 [J].
Springer, Timothy A. ;
Zhu, Jianghai ;
Xiao, Tsan .
JOURNAL OF CELL BIOLOGY, 2008, 182 (04) :791-800
[89]   Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation [J].
Svensson, Lena ;
Howarth, Kimberley ;
McDowall, Alison ;
Patzak, Irene ;
Evans, Rachel ;
Ussar, Siegfried ;
Moser, Markus ;
Metin, Ayse ;
Fried, Mike ;
Tomlinson, Ian ;
Hogg, Nancy .
NATURE MEDICINE, 2009, 15 (03) :306-312
[90]   Missense mutations in the β3 subunit have a different impact on the expression and function between αIIbβ3 and αvβ3 [J].
Tadokoro, S ;
Tomiyama, Y ;
Honda, S ;
Kashiwagi, H ;
Kosugi, S ;
Shiraga, M ;
Kiyoi, T ;
Kurata, Y ;
Matsuzawa, Y .
BLOOD, 2002, 99 (03) :931-938