Twisted rings and moduli stacks of "fat" point modules in non-commutative projective geometry

被引:2
作者
Chan, Daniel [1 ]
机构
[1] Univ New S Wales, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Non-commutative algebraic geometry;
D O I
10.1016/j.aim.2011.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hilbert scheme of point modules was introduced by Artin-Tate-Van den Bergh to study non-commutative graded algebras. The key tool is the construction of a map from the algebra to a twisted ring on this Hilbert scheme. In this paper, we study moduli stacks of more general "fat" point modules, and show that there is a similar map to a twisted ring associated to the stack. This is used to provide a sufficient criterion for a non-commutative projective surface to be birationally PI. It is hoped that such a criterion will be useful in understanding Mike Artin's conjecture on the birational classification of non-commutative surfaces. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2184 / 2209
页数:26
相关论文
共 26 条
  • [1] Auslander-Gorenstein rings
    Ajitabh, K
    Smith, SP
    Zhang, JJ
    [J]. COMMUNICATIONS IN ALGEBRA, 1998, 26 (07) : 2159 - 2180
  • [2] TWISTED HOMOGENEOUS COORDINATE RINGS
    ARTIN, M
    VANDENBERGH, M
    [J]. JOURNAL OF ALGEBRA, 1990, 133 (02) : 249 - 271
  • [3] Semiprime graded algebras of dimension two
    Artin, M
    Stafford, JT
    [J]. JOURNAL OF ALGEBRA, 2000, 227 (01) : 68 - 123
  • [4] NONCOMMUTATIVE PROJECTIVE SCHEMES
    ARTIN, M
    ZHANG, JJ
    [J]. ADVANCES IN MATHEMATICS, 1994, 109 (02) : 228 - 287
  • [5] Abstract Hilbert schemes
    Artin, M
    Zhang, JJ
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2001, 4 (04) : 305 - 394
  • [6] Generic flatness for strongly noetherian algebras
    Artin, M
    Small, LW
    Zhang, JJ
    [J]. JOURNAL OF ALGEBRA, 1999, 221 (02) : 579 - 610
  • [7] VERSAL DEFORMATIONS AND ALGEBRAIC STACKS
    ARTIN, M
    [J]. INVENTIONES MATHEMATICAE, 1974, 27 (03) : 165 - 189
  • [8] Artin M., 1997, REPRESENTATION THEOR, V238, P1
  • [9] Artin M., 1973, THEOREMES REPRESENTA
  • [10] Chan D., ARXIV09041717