SECOND EIGENVALUE OF A JACOBI OPERATOR OF HYPERSURFACES WITH CONSTANT SCALAR CURVATURE

被引:0
作者
Li, Haizhong [1 ]
Wang, Xianfeng [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Hypersurface with constant scalar curvature; second eigenvalue; Jacobi operator; mean curvature; principal curvature; MEAN-CURVATURE; 1ST EIGENVALUE; UNIT-SPHERE; STABILITY; SURFACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let x : M --> Sn+1(1) be an n-dimensional compact hypersurface with constant scalar curvature n(n - 1)r, r >= 1, in a unit sphere Sn+1(1), n >= 5, and let J(s) be the Jacobi operator of M. In 2004, L. J. Alias, A. Brasil and L. A. M. Sousa studied the first eigenvalue of J(s) of the hypersurface with constant scalar curvature n(n - 1) in Sn+1(1), n >= 3. In 2008, Q.-M. Cheng studied the first eigenvalue of the Jacobi operator J(s) of the hypersurface with constant scalar curvature n(n - 1)r, r > 1, in Sn+1(1). In this paper, we study the second eigenvalue of the Jacobi operator J(s) of M and give an optimal upper bound for the second eigenvalue of J(s).
引用
收藏
页码:291 / 307
页数:17
相关论文
共 22 条
[1]   STABLE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
ALENCAR, H ;
DOCARMO, M ;
COLARES, AG .
MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (01) :117-131
[2]   A characterization of Clifford tori with constant scalar curvature one by the first stability eigenvalue [J].
Alías, LJ ;
Brasil, A ;
Sousa, LAM .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (02) :165-175
[3]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[4]   r-Minimal submanifolds in space forms [J].
Cao, Linfen ;
Li, Haizhong .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 32 (04) :311-341
[5]   First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature [J].
Cheng, Qing-Ming .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) :3309-3318
[6]   Compact hypersurfaces in a unit sphere with infinite fundamental group [J].
Cheng, QM .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (01) :49-56
[7]   Hypersurfaces in a unit sphere Sn+1(1) with constant scalar curvature [J].
Cheng, QM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :755-768
[8]   HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
CHENG, SY ;
YAU, ST .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :195-204
[9]  
Chern S. S, 1968, 19 U KANS DEP MATH
[10]   Second eigenvalue of Schrodinger operators and mean curvature [J].
El Soufi, A ;
Ilias, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) :761-770