Size-tunable nanoparticles composed of dextran-b-poly(D,L-lactide) for drug delivery applications

被引:60
作者
Verma, Mohit S. [1 ]
Liu, Shengyan [1 ]
Chen, Yih Y. [1 ]
Meerasa, Ameena [1 ]
Gu, Frank X. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dextran; nanoparticles; biodistribution; pharmacokinetics; controlled drug delivery; in vivo; CORE-SHELL NANOPARTICLES; BLOCK-COPOLYMERS; IN-VITRO; POLYMERIC NANOPARTICLES; TARGETED NANOPARTICLES; POLY(ETHYLENE GLYCOL); DOXORUBICIN DELIVERY; PLGA NANOPARTICLES; PEG NANOPARTICLES; PLA NANOPARTICLES;
D O I
10.1007/s12274-011-0184-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoparticles (NPs) formulated using self-assembly of block copolymers have attracted significant attention as nano-scaled drug delivery vehicles. Here we report the development of a biodegradable NP using self-assembly of a linear amphiphilic block copolymer, Dex-b-PLA, composed of poly(D,L-lactide), and dextran. The size of the NPs can be precisely tuned between 15 and 70 nm by altering the molecular weight (M (W)) of the two polymer chains. Using doxorubicin as a model drug, we demonstrated that the NPs can carry up to 21% (w/w) of the drug payload. The release profile of doxorubicin from NPs showed sustained release for over 6 days. Using a rat model, we explored the pharmacokinetics profiles of Dex-b-PLA NPs, and showed proof-of-concept that long circulation lifetime of the NPs can be achieved by tuning the M (W) of Dex-b-PLA block copolymer. While the terminal half-life of Dex-b-PLA NPs (29.8 h) was similar to that observed in poly(ethylene glycol)-coated (PEG-coated) NPs (27.0 h), 90% of the injected Dex-b-PLA NPs were retained in the blood circulation for 38.3 h after injection, almost eight times longer than the PEG-coated NPs. The area under curve (AUC) of Dex-b-PLA NPs was almost four times higher than PEG-based NPs. The biodistribution study showed lower accumulation of Dex-b-PLA NPs in the spleen with 19.5% initial dose per gram tissue (IDGT) after 24 h compared to PEG-coated poly(lactide-co-glycolide) (PLGA) NPs (29.8% IDGT). These studies show that Dex-b-PLA block copolymer is a promising new biomaterial for making controlled nanoparticles as drug delivery vehicles.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 52 条
[1]   PHARMACOKINETICS OF STEALTH VERSUS CONVENTIONAL LIPOSOMES - EFFECT OF DOSE [J].
ALLEN, TM ;
HANSEN, C .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1068 (02) :133-141
[2]   HYDROPHILIC-INTERACTION CHROMATOGRAPHY FOR THE SEPARATION OF PEPTIDES, NUCLEIC-ACIDS AND OTHER POLAR COMPOUNDS [J].
ALPERT, AJ .
JOURNAL OF CHROMATOGRAPHY, 1990, 499 :177-196
[3]   STEALTH ME.PEG-PLA NANOPARTICLES AVOID UPTAKE BY THE MONONUCLEAR PHAGOCYTES SYSTEM [J].
BAZILE, D ;
PRUDHOMME, C ;
BASSOULLET, MT ;
MARLARD, M ;
SPENLEHAUER, G ;
VEILLARD, M .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (04) :493-498
[4]   ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells [J].
Chittasupho, Chuda ;
Xie, Sheng-Xue ;
Baoum, Abdulgader ;
Yakovleva, Tatyana ;
Siahaan, Teruna J. ;
Berkland, Cory J. .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2009, 37 (02) :141-150
[5]   Therapeutic nanoparticles for drug delivery in cancer [J].
Cho, Kwangjae ;
Wang, Xu ;
Nie, Shuming ;
Chen, Zhuo ;
Shin, Dong M. .
CLINICAL CANCER RESEARCH, 2008, 14 (05) :1310-1316
[6]   Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution [J].
Chouly, C ;
Pouliquen, D ;
Lucet, I ;
Jeune, JJ ;
Jallet, P .
JOURNAL OF MICROENCAPSULATION, 1996, 13 (03) :245-255
[7]   Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles [J].
Dhar, Shanta ;
Gu, Frank X. ;
Langer, Robert ;
Farokhzad, Omid C. ;
Lippard, Stephen J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (45) :17356-17361
[8]   Method for analysis of nanoparticle hemolytic properties in vitro [J].
Dobrovoiskaia, Marina A. ;
Clogston, Jeffrey D. ;
Neun, Barry W. ;
Hall, Jennifer B. ;
Patri, Anil K. ;
McNeil, Scott E. .
NANO LETTERS, 2008, 8 (08) :2180-2187
[9]   In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy [J].
Dong, Yuancai ;
Feng, Si-Shen .
BIOMATERIALS, 2007, 28 (28) :4154-4160
[10]  
Drummond DC, 1999, PHARMACOL REV, V51, P691