Fabrication and application of enzyme-incorporated peptide nanotubes

被引:64
作者
Yu, LT
Banerjee, IA
Gao, XY
Nuraje, N
Matsui, H [1 ]
机构
[1] CUNY Hunter Coll, Dept Chem & Biochem, New York, NY 10021 USA
[2] CUNY, Grad Ctr, New York, NY 10021 USA
关键词
D O I
10.1021/bc050199a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Enzyme engineering is a fast-growing field in the pharmaceutical and food markets. For those applications, various substrates have been examined to immobilize and stabilize enzymes. In this report, we examined peptide nanotubes as supports for enzymes. When a model enzyme, Candida rugosa lipase, was encapsulated in peptide nanotubes, the catalytic activity of nanotube-bound lipases was increased 33% as compared to free-standing lipases at room temperature. At an elevated temperature, 65 degrees C, the activity of lipases inside the nanotubes was 70% higher than free-standing lipases. The activity enhancement of lipases in the peptide nanotubes is likely induced by the conformation change of lipases to the open form (the enzymatically active structure) as lipases are adsorbed on the inner surfaces of peptide nanotubes.
引用
收藏
页码:1484 / 1487
页数:4
相关论文
共 30 条
[1]   Stability studies on a lipase from Bacillus subtilis in guanidinium chloride [J].
Acharya, P ;
Rao, NM .
JOURNAL OF PROTEIN CHEMISTRY, 2003, 22 (01) :51-60
[2]   Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks [J].
Banerjee, IA ;
Yu, LT ;
Matsui, H .
NANO LETTERS, 2003, 3 (03) :283-287
[3]   RABBIT MUSCLE ALDOLASE AS A CATALYST IN ORGANIC-SYNTHESIS [J].
BEDNARSKI, MD ;
SIMON, ES ;
BISCHOFBERGER, N ;
FESSNER, WD ;
KIM, MJ ;
LEES, W ;
SAITO, T ;
WALDMANN, H ;
WHITESIDES, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (02) :627-635
[4]   Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme [J].
Cao, LQ ;
Bornscheuer, UT ;
Schmid, RD .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 1999, 6 (03) :279-285
[5]   Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules [J].
Caruso, F ;
Trau, D ;
Möhwald, H ;
Renneberg, R .
LANGMUIR, 2000, 16 (04) :1485-1488
[6]   Immobilisation studies and catalytic properties of microbial lipase onto styrene-divinylbenzene copolymer [J].
de Oliveira, PC ;
Alves, GM ;
de Castro, HF .
BIOCHEMICAL ENGINEERING JOURNAL, 2000, 5 (01) :63-71
[7]   Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates [J].
Djalali, R ;
Chen, YF ;
Matsui, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (19) :5873-5879
[8]   Fabrication of protein tubules: Immobilization of proteins on peptide tubules [J].
Douberly, GE ;
Pan, S ;
Walters, D ;
Matsui, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (32) :7612-7618
[9]   Preparation and properties of lipase immobilized on MCM-36 support [J].
Dumitriu, E ;
Secundo, F ;
Patarin, J ;
Fechete, L .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2003, 22 (3-4) :119-133
[10]   Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles [J].
Dyal, A ;
Loos, K ;
Noto, M ;
Chang, SW ;
Spagnoli, C ;
Shafi, KVPM ;
Ulman, A ;
Cowman, M ;
Gross, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1684-1685