Some Remarks on Schauder Bases in Lipschitz Free Spaces

被引:0
|
作者
Novotny, Matej [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Jugoslavskych Partyzanu 1580-3, Prague 16000, Czech Republic
[2] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Dept Ind Informat, Jugoslavskych Partyzanu 1580-3, Prague 16000, Czech Republic
关键词
Lipschitz-free space; Schauder basis; extension operator; unconditionality; APPROXIMATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the basis constant of every retractional Schauder basis on the Free space of a graph circle increases with the radius. As a consequence, there exists a uniformly discrete subset M subset of R-2 such that F(M) does not have a retractional Schauder basis. Furthermore, we show that for any net N subset of R-n, n >=( )2, there is no retractional unconditional basis on the Free space F(N).
引用
收藏
页码:111 / 126
页数:16
相关论文
共 50 条
  • [41] On symmetric Schauder bases in non-archimedean Frechet spaces
    Sliwa, W
    MONATSHEFTE FUR MATHEMATIK, 2002, 137 (01): : 77 - 86
  • [42] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Bruno M. Braga
    Javier Alejandro Chávez-Domínguez
    Thomas Sinclair
    Mathematische Annalen, 2024, 388 : 1053 - 1090
  • [43] ON SOME CLASSES OF SCHAUDER FRAMES IN BANACH SPACES
    Poumai, Khole Timothy
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2014, 12 (02)
  • [44] SCHAUDER BASES
    HALMOS, PR
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (04): : 256 - 257
  • [45] Lipschitz Algebras and Lipschitz-Free Spaces Over Unbounded Metric Spaces
    Albiac, Fernando
    Ansorena, Jose L.
    Cuth, Marek
    Doucha, Michal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) : 16327 - 16362
  • [46] On Symmetric Schauder Bases in Non-Archimedean Fréchet Spaces
    Wiesław Śliwa
    Monatshefte für Mathematik, 2002, 137 : 77 - 86
  • [47] Schauder bases in Banach spaces:: Application to numerical solutions of differential equations
    Palomares, A
    Pasadas, M
    Ramírez, V
    Galán, MR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (5-6) : 619 - 622
  • [48] EXISTENCE OF SCHAUDER BASES IN SOBOLEV-BESOV SPACES - ISOMORPHIC RELATIONS
    TRIEBEL, H
    STUDIA MATHEMATICA, 1973, 46 (01) : 83 - 100
  • [49] Orthogonal and Schauder bases in non-archimedean locally convex spaces
    De Grande-De Kimpe, N
    Kakol, J
    Perez-Garcia, C
    Schikhof, WH
    P-ADIC FUNCTIONAL ANALYSIS, PROCEEDINGS, 2001, 222 : 103 - 126
  • [50] ON WEAK AND SCHAUDER F-BASES IN TOPOLOGICAL VECTOR-SPACES
    GIMENEZ, I
    LOPEZ, JA
    ARCHIV DER MATHEMATIK, 1988, 51 (06) : 561 - 569