Some Remarks on Schauder Bases in Lipschitz Free Spaces

被引:0
作者
Novotny, Matej [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Jugoslavskych Partyzanu 1580-3, Prague 16000, Czech Republic
[2] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Dept Ind Informat, Jugoslavskych Partyzanu 1580-3, Prague 16000, Czech Republic
关键词
Lipschitz-free space; Schauder basis; extension operator; unconditionality; APPROXIMATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the basis constant of every retractional Schauder basis on the Free space of a graph circle increases with the radius. As a consequence, there exists a uniformly discrete subset M subset of R-2 such that F(M) does not have a retractional Schauder basis. Furthermore, we show that for any net N subset of R-n, n >=( )2, there is no retractional unconditional basis on the Free space F(N).
引用
收藏
页码:111 / 126
页数:16
相关论文
共 16 条
  • [1] Arens R., 1956, PAC J MATH, V6, P397
  • [2] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [3] TREE METRICS AND THEIR LIPSCHITZ-FREE SPACES
    Godard, A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4311 - 4320
  • [4] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [5] Godefroy G., 2015, North-Western Eur. J. Math, V1, P1
  • [6] FREE BANACH SPACES AND THE APPROXIMATION PROPERTIES
    Godefroy, Gilles
    Ozawa, Narutaka
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (05) : 1681 - 1687
  • [7] Approximation and Schur properties for Lipschitz free spaces over compact metric spaces
    Hajek, P.
    Lancien, G.
    Pernecka, E.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (01) : 63 - 72
  • [8] Some remarks on the structure of Lipschitz-free spaces
    Hajek, Petr
    Novotny, Matej
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 283 - 304
  • [9] On Schauder bases in Lipschitz-free spaces
    Hajek, Petr
    Pernecka, Eva
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 629 - 646
  • [10] Kalton N.J., 2004, Collect. Math, V55, P171