Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework

被引:687
|
作者
Liao, Meihong [1 ,2 ]
Wan, Pengbo [1 ,2 ]
Wen, Jiangru [1 ,2 ]
Gong, Min [1 ,2 ]
Wu, Xiaoxuan [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Shi, Rui [3 ]
Zhang, Liqun [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Ctr Adv Elastomer Mat, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Lab Biomed Mat, Beijing 100029, Peoples R China
[3] Beijing Res Inst Traumatol & Orthopaed, Lab Bone Tissue Engn, Beijing 100035, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
biocompatible sensors; conductive hybrid hydrogel frameworks; self-adhesive sensors; self-healing sensors; wearable human-motion sensors; STRAIN SENSOR; PRESSURE SENSOR; GRAPHENE FILMS; TRANSPARENT; SENSITIVITY; COMPOSITE; GELS;
D O I
10.1002/adfm.201703852
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Healable, adhesive, wearable, and soft human-motion sensors for ultrasensitive human-machine interaction and healthcare monitoring are successfully assembled from conductive and human-friendly hybrid hydrogels with reliable self-healing capability and robust self-adhesiveness. The conductive, healable, and self-adhesive hybrid network hydrogels are prepared from the delicate conformal coating of conductive functionalized single-wall carbon nanotube (FSWCNT) networks by dynamic supramolecular cross-linking among FSWCNT, biocompatible polyvinyl alcohol, and polydopamine. They exhibit fast self-healing ability (within 2 s), high self-healing efficiency (99%), and robust adhesiveness, and can be assembled as healable, adhesive, and soft human-motion sensors with tunable conducting channels of pores for ions and framework for electrons for real time and accurate detection of both large-scale and tiny human activities (including bending and relaxing of fingers, walking, chewing, and pulse). Furthermore, the soft human-motion sensors can be enabled to wirelessly monitor the human activities by coupling to a wireless transmitter. Additionally, the in vitro cytotoxicity results suggest that the hydrogels show no cytotoxicity and can facilitate cell attachment and proliferation. Thus, the healable, adhesive, wearable, and soft human-motion sensors have promising potential in various wearable, wireless, and soft electronics for human-machine interfaces, human activity monitoring, personal healthcare diagnosis, and therapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors
    Zhang, Xiaoyong
    Chen, Jingsi
    He, Jinmei
    Bai, Yongping
    Zeng, Hongbo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 585 (585) : 420 - 432
  • [2] Mussel-Inspired Adhesive and Carbon Fiber Conductive Hydrogel for Flexible Sensors
    Huang, Yuchan
    Zhu, Tang
    Zhu, Zijuan
    Yuan, Huixin
    Tan, Liru
    Yao, Pingping
    Qiao, Yongna
    Zhu, Caizhen
    Xu, Jian
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (07) : 5707 - 5715
  • [3] Development of a mussel-inspired conductive for wearable sensors
    He, Guanliang
    Zhu, Chuang
    Shi, Yuze
    Yu, Yingjia
    Wu, Yi
    Soutis, Constantinos
    Cao, Le
    Liu, Xuqing
    ISCIENCE, 2025, 28 (02)
  • [4] Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors
    Lv, Rui
    Bei, Zhongwu
    Huang, Yuan
    Chen, Yangwei
    Zheng, Zhiqiang
    You, Qingliang
    Zhu, Chao
    Cao, Yiping
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (02)
  • [5] A new mussel-inspired highly self-adhesive & conductive poly (vinyl alcohol)-based hydrogel for wearable sensors
    Yu, Yaru
    Zhao, Xiaowen
    Ye, Lin
    Applied Surface Science, 2021, 562
  • [6] A new mussel-inspired highly self-adhesive & conductive poly (vinyl alcohol)-based hydrogel for wearable sensors
    Yu, Yaru
    Zhao, Xiaowen
    Ye, Lin
    APPLIED SURFACE SCIENCE, 2021, 562
  • [7] Mussel-Inspired Conductive Hydrogel with Self-Healing, Adhesive, and Antibacterial Properties for Wearable Monitoring
    Zhang, Xiaohui
    Wei, Jingjing
    Lu, Shengchang
    Xiao, He
    Miao, Qingxian
    Zhang, Min
    Liu, Kai
    Chen, Lihui
    Huang, Liulian
    Wu, Hui
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (11) : 5798 - 5807
  • [8] A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics
    Han, Lu
    Lu, Xiong
    Wang, Menghao
    Gan, Donglin
    Deng, Weili
    Wang, Kefeng
    Fang, Liming
    Liu, Kezhi
    Chan, Chun Wai
    Tang, Youhong
    Weng, Lu-Tao
    Yuan, Huipin
    SMALL, 2017, 13 (02)
  • [9] Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel
    Brubaker, Carrie E.
    Messersmith, Phillip B.
    BIOMACROMOLECULES, 2011, 12 (12) : 4326 - 4334
  • [10] Mussel-inspired self-healing adhesive MXene hydrogel for epidermal electronics
    Zhang, Yunfei
    Xu, Zhishan
    Li, Mingkun
    Yuan, Yue
    Wang, Wei
    Zhang, Liqun
    Wan, Pengbo
    DEVICE, 2024, 2 (03):