Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework

被引:702
作者
Liao, Meihong [1 ,2 ]
Wan, Pengbo [1 ,2 ]
Wen, Jiangru [1 ,2 ]
Gong, Min [1 ,2 ]
Wu, Xiaoxuan [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Shi, Rui [3 ]
Zhang, Liqun [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Ctr Adv Elastomer Mat, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Lab Biomed Mat, Beijing 100029, Peoples R China
[3] Beijing Res Inst Traumatol & Orthopaed, Lab Bone Tissue Engn, Beijing 100035, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
biocompatible sensors; conductive hybrid hydrogel frameworks; self-adhesive sensors; self-healing sensors; wearable human-motion sensors; STRAIN SENSOR; PRESSURE SENSOR; GRAPHENE FILMS; TRANSPARENT; SENSITIVITY; COMPOSITE; GELS;
D O I
10.1002/adfm.201703852
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Healable, adhesive, wearable, and soft human-motion sensors for ultrasensitive human-machine interaction and healthcare monitoring are successfully assembled from conductive and human-friendly hybrid hydrogels with reliable self-healing capability and robust self-adhesiveness. The conductive, healable, and self-adhesive hybrid network hydrogels are prepared from the delicate conformal coating of conductive functionalized single-wall carbon nanotube (FSWCNT) networks by dynamic supramolecular cross-linking among FSWCNT, biocompatible polyvinyl alcohol, and polydopamine. They exhibit fast self-healing ability (within 2 s), high self-healing efficiency (99%), and robust adhesiveness, and can be assembled as healable, adhesive, and soft human-motion sensors with tunable conducting channels of pores for ions and framework for electrons for real time and accurate detection of both large-scale and tiny human activities (including bending and relaxing of fingers, walking, chewing, and pulse). Furthermore, the soft human-motion sensors can be enabled to wirelessly monitor the human activities by coupling to a wireless transmitter. Additionally, the in vitro cytotoxicity results suggest that the hydrogels show no cytotoxicity and can facilitate cell attachment and proliferation. Thus, the healable, adhesive, wearable, and soft human-motion sensors have promising potential in various wearable, wireless, and soft electronics for human-machine interfaces, human activity monitoring, personal healthcare diagnosis, and therapy.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[2]   Bioinspired Ultratough Hydrogel with Fast Recovery, Self-Healing, Injectability and Cytocompatibility [J].
Azevedo, Sara ;
Costa, Ana M. S. ;
Andersen, Amanda ;
Choi, Insung S. ;
Birkedal, Henrik ;
Mono, Joao F. .
ADVANCED MATERIALS, 2017, 29 (28)
[3]   Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection [J].
Cai, Guofa ;
Wang, Jiangxin ;
Qian, Kai ;
Chen, Jingwei ;
Li, Shaohui ;
Lee, Pooi See .
ADVANCED SCIENCE, 2017, 4 (02)
[4]   Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors [J].
Cai, Yichen ;
Shen, Jie ;
Dai, Ziyang ;
Zang, Xiaoxian ;
Dong, Qiuchun ;
Guan, Guofeng ;
Li, Lain-Jong ;
Huang, Wei ;
Dong, Xiaochen .
ADVANCED MATERIALS, 2017, 29 (31)
[5]   Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays [J].
Chen, Zhuo ;
Ming, Tian ;
Goulamaly, Mahomed Mehdi ;
Yao, Heming ;
Nezich, Daniel ;
Hempel, Marek ;
Hofmann, Mario ;
Kong, Jing .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (28) :5061-5067
[6]   Highly Stretchable, Hysteresis-Free Ionic Liquid -Based Strain Sensor for Precise Human Motion Monitoring [J].
Choi, Dong Yun ;
Kim, Min Hyeong ;
Oh, Yong Suk ;
Jung, Soo-Ho ;
Jung, Jae Hee ;
Sung, Hyung Jin ;
Lee, Hyung Woo ;
Lee, Hye Moon .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1770-1780
[7]   Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array [J].
Choong, Chwee-Lin ;
Shim, Mun-Bo ;
Lee, Byoung-Sun ;
Jeon, Sanghun ;
Ko, Dong-Su ;
Kang, Tae-Hyung ;
Bae, Jihyun ;
Lee, Sung Hoon ;
Byun, Kyung-Eun ;
Im, Jungkyun ;
Jeong, Yong Jin ;
Park, Chan Eon ;
Park, Jong-Jin ;
Chung, U-In .
ADVANCED MATERIALS, 2014, 26 (21) :3451-3458
[8]   Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring [J].
Dagdeviren, Canan ;
Su, Yewang ;
Joe, Pauline ;
Yona, Raissa ;
Liu, Yuhao ;
Kim, Yun-Soung ;
Huang, YongAn ;
Damadoran, Anoop R. ;
Xia, Jing ;
Martin, Lane W. ;
Huang, Yonggang ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2014, 5
[9]   Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability [J].
Darabi, Mohammad Ali ;
Khosrozadeh, Ali ;
Mbeleck, Rene ;
Liu, Yuqing ;
Chang, Qiang ;
Jiang, Junzi ;
Cai, Jun ;
Wang, Quan ;
Luo, Gaoxing ;
Xing, Malcolm .
ADVANCED MATERIALS, 2017, 29 (31)
[10]   Capacitive Soft Strain Sensors via Multicore-Shell Fiber Printing [J].
Frutiger, Andreas ;
Muth, Joseph T. ;
Vogt, Daniel M. ;
Menguec, Yigit ;
Campo, Alexandre ;
Valentine, Alexander D. ;
Walsh, Conor J. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2015, 27 (15) :2440-2446