Robust Principal Component Analysis: An IRLS Approach

被引:6
|
作者
Polyak, Boris T. [1 ]
Khlebnikov, Mikhail V. [1 ]
机构
[1] Russian Acad Sci, Inst Control Sci, 65 Profsoyuznaya St, Moscow, Russia
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
基金
俄罗斯科学基金会;
关键词
principal component analysis; robustness; outliers; method of iteratively reweighted least squares; Huber's functions; SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The modern problems of optimization, estimation, signal processing, and image recognition deal with data of huge dimensions. It is important to develop effective methods and algorithms for such problems. An important idea is the construction of low-dimension approximations to large-scale data. One of the most popular methods for this purpose is the principal component analysis (PCA), which is, however, sensitive to outliers. There exist numerous robust versions of PCA, relying on sparsity ideas and l(1) techniques. The present paper offers another approach to robust PCA exploiting Huber's functions and numerical implementation based on the Iterative Reweighted Least Squares (IRLS) method. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2762 / 2767
页数:6
相关论文
共 50 条
  • [31] Functional outlier detection with robust functional principal component analysis
    Sawant, Pallavi
    Billor, Nedret
    Shin, Hyejin
    COMPUTATIONAL STATISTICS, 2012, 27 (01) : 83 - 102
  • [32] Robust principal component analysis and outlier detection with ecological data
    Jackson, DA
    Chen, Y
    ENVIRONMETRICS, 2004, 15 (02) : 129 - 139
  • [33] Evaluating Special Event Transit Demand: A Robust Principal Component Analysis Approach
    Kumar, Pramesh
    Khani, Alireza
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (12) : 7370 - 7382
  • [34] A note on robust kernel principal component analysis
    Deng, Xinwei
    Yuan, Ming
    Sudjianto, Agus
    PREDICTION AND DISCOVERY, 2007, 443 : 21 - +
  • [35] Exactly Robust Kernel Principal Component Analysis
    Fan, Jicong
    Chow, Tommy W. S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 749 - 761
  • [36] Generalized mean for robust principal component analysis
    Oh, Jiyong
    Kwak, Nojun
    PATTERN RECOGNITION, 2016, 54 : 116 - 127
  • [37] DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH PRINCIPAL COMPONENT ANALYSIS
    Cheng, Jianqiang
    Chen, Richard Li-Yang
    Najm, Habib N.
    Pinar, Ali
    Safta, Cosmin
    Watson, Jean-Paul
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 1817 - 1841
  • [38] ROBUST PRINCIPAL COMPONENT ANALYSIS BY PROJECTION PURSUIT
    XIE, YL
    WANG, JH
    LIANG, YZ
    SUN, LX
    SONG, XH
    YU, RQ
    JOURNAL OF CHEMOMETRICS, 1993, 7 (06) : 527 - 541
  • [39] Principle component analysis: Robust versions
    Polyak, B. T.
    Khlebnikov, M. V.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (03) : 490 - 506
  • [40] Robust Orthogonal Complement Principal Component Analysis
    She, Yiyuan
    Li, Shijie
    Wu, Dapeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 763 - 771