Robust Principal Component Analysis: An IRLS Approach

被引:6
|
作者
Polyak, Boris T. [1 ]
Khlebnikov, Mikhail V. [1 ]
机构
[1] Russian Acad Sci, Inst Control Sci, 65 Profsoyuznaya St, Moscow, Russia
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
基金
俄罗斯科学基金会;
关键词
principal component analysis; robustness; outliers; method of iteratively reweighted least squares; Huber's functions; SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The modern problems of optimization, estimation, signal processing, and image recognition deal with data of huge dimensions. It is important to develop effective methods and algorithms for such problems. An important idea is the construction of low-dimension approximations to large-scale data. One of the most popular methods for this purpose is the principal component analysis (PCA), which is, however, sensitive to outliers. There exist numerous robust versions of PCA, relying on sparsity ideas and l(1) techniques. The present paper offers another approach to robust PCA exploiting Huber's functions and numerical implementation based on the Iterative Reweighted Least Squares (IRLS) method. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2762 / 2767
页数:6
相关论文
共 50 条
  • [21] Robust covariance estimation for distributed principal component analysis
    Li, Kangqiang
    Bao, Han
    Zhang, Lixin
    METRIKA, 2022, 85 (06) : 707 - 732
  • [22] Robust covariance estimation for distributed principal component analysis
    Kangqiang Li
    Han Bao
    Lixin Zhang
    Metrika, 2022, 85 : 707 - 732
  • [23] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613
  • [24] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [25] Robust sparse principal component analysis by DC programming algorithm
    Li, Jieya
    Yang, Liming
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3183 - 3193
  • [26] Robust principal component analysis via ES-algorithm
    Lim, Yaeji
    Park, Yeonjoo
    Oh, Hee-Seok
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (01) : 149 - 159
  • [27] Robust principal component analysis via ES-algorithm
    Yaeji Lim
    Yeonjoo Park
    Hee-Seok Oh
    Journal of the Korean Statistical Society, 2014, 43 : 149 - 159
  • [28] Functional outlier detection with robust functional principal component analysis
    Pallavi Sawant
    Nedret Billor
    Hyejin Shin
    Computational Statistics, 2012, 27 : 83 - 102
  • [29] Robust Principal Component Analysis Based on Pairwise Correlation Estimators
    Van Aelst, Stefan
    Vandervieren, Ellen
    Willems, Gert
    COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 573 - 580
  • [30] Robust sparse principal component analysis: situation of full sparseness
    Alkan, B. Baris
    Unaldi, I
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) : 5 - 20