Robust Principal Component Analysis: An IRLS Approach

被引:6
|
作者
Polyak, Boris T. [1 ]
Khlebnikov, Mikhail V. [1 ]
机构
[1] Russian Acad Sci, Inst Control Sci, 65 Profsoyuznaya St, Moscow, Russia
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
基金
俄罗斯科学基金会;
关键词
principal component analysis; robustness; outliers; method of iteratively reweighted least squares; Huber's functions; SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The modern problems of optimization, estimation, signal processing, and image recognition deal with data of huge dimensions. It is important to develop effective methods and algorithms for such problems. An important idea is the construction of low-dimension approximations to large-scale data. One of the most popular methods for this purpose is the principal component analysis (PCA), which is, however, sensitive to outliers. There exist numerous robust versions of PCA, relying on sparsity ideas and l(1) techniques. The present paper offers another approach to robust PCA exploiting Huber's functions and numerical implementation based on the Iterative Reweighted Least Squares (IRLS) method. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2762 / 2767
页数:6
相关论文
共 50 条
  • [1] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    STATISTICS, 2003, 37 (01) : 73 - 83
  • [2] FAULT DETECTION AND ISOLATION WITH ROBUST PRINCIPAL COMPONENT ANALYSIS
    Tharrault, Yvon
    Mourot, Gilles
    Ragot, Jose
    Maquin, Didier
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (04) : 429 - 442
  • [3] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [4] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [5] ROBPCA: A new approach to robust principal component analysis
    Hubert, M
    Rousseeuw, PJ
    Vanden Branden, K
    TECHNOMETRICS, 2005, 47 (01) : 64 - 79
  • [6] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [7] Robust Principal Component Analysis: A Median of Means Approach
    Paul, Debolina
    Chakraborty, Saptarshi
    Das, Swagatam
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16788 - 16800
  • [8] Robust kernel principal component analysis and classification
    Michiel Debruyne
    Tim Verdonck
    Advances in Data Analysis and Classification, 2010, 4 : 151 - 167
  • [9] Robust kernel principal component analysis and classification
    Debruyne, Michiel
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 151 - 167
  • [10] Robust Principal Component Analysis based on Purity
    Pan, Jinyan
    Cai, Yingqi
    Xie, Youwei
    Lin, Tingting
    Gao, Yunlong
    Cao, Chao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2017 - 2023