Physics-informed neural networks for gravity field modeling of the Earth and Moon

被引:12
|
作者
Martin, John [1 ]
Schaub, Hanspeter [1 ]
机构
[1] Univ Colorado, Ann & HJ Smead Dept Aerosp Engn Sci, 3775 Discovery Dr, Boulder, CO 80303 USA
来源
基金
美国国家科学基金会;
关键词
Gravity field modeling; Machine learning; Physics-informed neural network; Spherical harmonics; Planetary bodies; Astrodynamics; REPRESENTATIONS;
D O I
10.1007/s10569-022-10069-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
High-fidelity representations of the gravity field underlie all applications in astrodynamics. Traditionally these gravity models are constructed analytically through a potential function represented in spherical harmonics, mascons, or polyhedrons. Such representations are often convenient for theory, but they come with unique disadvantages in application. Broadly speaking, analytic gravity models are often not compact, requiring thousands or millions of parameters to adequately model high-order features in the environment. In some cases these analytic models can also be operationally limiting-diverging near the surface of a body or requiring assumptions about its mass distribution or density profile. Moreover, these representations can be expensive to regress, requiring large amounts of carefully distributed data which may not be readily available in new environments. To combat these challenges, this paper aims to shift the discussion of gravity field modeling away from purely analytic formulations and toward machine learning representations. Within the past decade there have been substantial advances in the field of deep learning which help bypass some of the limitations inherent to the existing analytic gravity models. Specifically, this paper investigates the use of physics-informed neural networks (PINNs) to represent the gravitational potential of two planetary bodies-the Earth and Moon. PINNs combine the flexibility of deep learning models with centuries of analytic insight to learn new basis functions that are uniquely suited to represent these complex environments. The results show that the learned basis set generated by the PINN gravity model can offer advantages over its analytic counterparts in model compactness and computational efficiency.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
    Djeumou, Franck
    Neary, Cyrus
    Goubault, Eric
    Putot, Sylvie
    Topcu, Ufuk
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [22] Physics-Informed Neural Networks for Modeling Cellulose Degradation in Power Transformers
    Bragone, Federica
    Oueslati, Khaoula
    Laneryd, Tor
    Luvisotto, Michele
    Morozovska, Kateryna
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1365 - 1372
  • [23] A Survey of Bayesian Calibration and Physics-informed Neural Networks in Scientific Modeling
    Felipe A. C. Viana
    Arun K. Subramaniyan
    Archives of Computational Methods in Engineering, 2021, 28 : 3801 - 3830
  • [24] Modeling of the Forward Wave Propagation Using Physics-Informed Neural Networks
    Alkhadhr, Shaikhah
    Liu, Xilun
    Almekkawy, Mohamed
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [25] Physics-Informed Neural Networks for the Reynolds Equation with Transient Cavitation Modeling
    Brumand-Poor, Faras
    Barlog, Florian
    Plueckhahn, Nils
    Thebelt, Matteo
    Bauer, Niklas
    Schmitz, Katharina
    LUBRICANTS, 2024, 12 (11)
  • [26] Modeling Power-Bus Structures with Physics-Informed Neural Networks
    Fujita, Kazuhiro
    PROCEEDINGS OF THE 2024 IEEE JOINT INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL & POWER INTEGRITY: EMC JAPAN/ASIAPACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, EMC JAPAN/APEMC OKINAWA 2024, 2024, : 552 - 555
  • [27] Physics-informed neural networks for modeling water flows in a river channel
    Nazari L.F.
    Camponogara E.
    Seman L.O.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1001 - 1015
  • [28] Surface Flux Transport Modeling Using Physics-informed Neural Networks
    Athalathil, Jithu J.
    Vaidya, Bhargav
    Kundu, Sayan
    Upendran, Vishal
    Cheung, Mark C. M.
    ASTROPHYSICAL JOURNAL, 2024, 975 (02):
  • [29] Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
    Djeumou, Franck
    Neary, Cyrus
    Goubault, Eric
    Putot, Sylvie
    Topcu, Ufuk
    Proceedings of Machine Learning Research, 2022, 168 : 263 - 277
  • [30] Physics-informed neural networks for modeling hysteretic behavior in magnetorheological dampers
    Wu, Yuandi
    Sicard, Brett
    Kosierb, Patrick
    Appuhamy, Raveen
    McCafferty-Leroux, Alex
    Gadsden, S. Andrew
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS VI, 2024, 13051