A genetic mixed-integer optimization of neural network hyper-parameters

被引:2
|
作者
Spurlock, Kyle [1 ]
Elgazzar, Heba [1 ]
机构
[1] Morehead State Univ, Sch Engn & Comp Sci, 150 Univ Blvd, Morehead, KY 40351 USA
关键词
Genetic algorithm; Deep learning; Mixed-integer optimization; Neural architecture search; ALGORITHM;
D O I
10.1007/s11227-022-04475-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Neural networks (NN) have become immensely popular for their effectiveness and flexibility in learning complicated patterns. Despite this success, they are often considered difficult to design because of the wide variety of parameters they require. Determining the most optimal selection of parameters has become tedious and costly, and neural architecture search (NAS) methods have been employed to try and take the guesswork out of the process. A common NAS approach is the genetic algorithm (GA); however, its usage is often exclusively tied to either the learnable parameters, or the meta-parameters that augment the learning. This work proposes an experimental approach for optimizing both real-valued weights and discrete meta-parameters simultaneously. Experimental results have shown that the current approach evolves both parameter sets effectively for simple problems like Iris, but still struggles in finding an optimal model for more rigorous problems.
引用
收藏
页码:14680 / 14702
页数:23
相关论文
共 50 条
  • [1] A genetic mixed-integer optimization of neural network hyper-parameters
    Kyle Spurlock
    Heba Elgazzar
    The Journal of Supercomputing, 2022, 78 : 14680 - 14702
  • [2] RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network
    Talaat, Fatma M.
    Gamel, Samah A.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (10) : 13349 - 13359
  • [3] RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network
    Fatma M. Talaat
    Samah A. Gamel
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 13349 - 13359
  • [4] Online Mixed-Integer Optimization in Milliseconds
    Bertsimas, Dimitris
    Stellato, Bartolomeo
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (04) : 2229 - 2248
  • [5] A mixed-integer approximation of robust optimization problems with mixed-integer adjustments
    Kronqvist, Jan
    Li, Boda
    Rolfes, Jan
    OPTIMIZATION AND ENGINEERING, 2024, 25 (03) : 1271 - 1296
  • [6] Extending MLP ANN hyper-parameters Optimization by using Genetic Algorithm
    Itano, Fernando
    de Abreu de Sousa, Miguel Angelo
    Del-Moral-Hernandez, Emilio
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [7] Evolutionary Mixed-Integer Optimization with Explicit Constraints
    Hong, Yuan
    Arnold, Dirk V.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 822 - 830
  • [8] A neural network-based distributional constraint learning methodology for mixed-integer stochastic optimization
    Alcantara, Antonio
    Ruiz, Carlos
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [9] Mixed-Integer Optimization with Constraint Learning
    Maragno, Donato
    Wiberg, Holly
    Bertsimas, Dimitris
    Birbil, S. . Ilker
    den Hertog, Dick
    Fajemisin, Adejuyigbe O.
    OPERATIONS RESEARCH, 2025, 73 (02) : 1011 - 1028
  • [10] A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization
    Eichfelder, Gabriele
    Stein, Oliver
    Warnow, Leo
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (02) : 1736 - 1766