A Graph-Theoretic Approach for Segmentation of PET Images

被引:0
|
作者
Bagci, Ulas [1 ,2 ]
Yao, Jianhua [2 ]
Caban, Jesus [3 ]
Turkbey, Evrim [2 ]
Aras, Omer [2 ,4 ]
Mollura, Daniel J. [1 ,2 ]
机构
[1] NIH, Ctr Infect Dis Imaging, Bethesda, MD 20892 USA
[2] NIH, Dept Radiol & Imag Sci, Bethesda, MD 20892 USA
[3] NIH, Natl Lib Med, Bethesda, MD 20892 USA
[4] Univ Maryland Med Syst, Dept Radiol Nucl Med, Baltimore, MD USA
来源
2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2011年
关键词
VOLUME;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Segmentation of positron emission tomography (PET) images is an important objective because accurate measurement of signal from radio-tracer activity in a region of interest is critical for disease treatment and diagnosis. In this study, we present the use of a graph based method for providing robust, accurate, and reliable segmentation of functional volumes on PET images from standardized uptake values (SUVs). We validated the success of the segmentation method on different PET phantoms including ground truth CT simulation, and compared it to two well-known threshold based segmentation methods. Furthermore, we assessed intra- and inter-observer variation in delineation accuracy as well as reproducibility of delineations using real clinical data. Experimental results indicate that the presented segmentation method is superior to the commonly used threshold based methods in terms of accuracy, robustness, repeatability, and computational efficiency.
引用
收藏
页码:8479 / 8482
页数:4
相关论文
共 50 条
  • [21] Semiautomated segmentation of the human spine based on echoplanar images
    Giulietti, Giovanni
    Summers, Paul E.
    Ferraro, Diana
    Porro, Carlo A.
    Maraviglia, Bruno
    Giove, Federico
    MAGNETIC RESONANCE IMAGING, 2011, 29 (10) : 1429 - 1436
  • [22] Head and neck tumor segmentation in PET/CT: The HECKTOR challenge
    Oreiller, Valentin
    Andrearczyk, Vincent
    Jreige, Mario
    Boughdad, Sarah
    Elhalawani, Hesham
    Castelli, Joel
    Vallieres, Martin
    Zhu, Simeng
    Xie, Juanying
    Peng, Ying
    Iantsen, Andrei
    Hatt, Mathieu
    Yuan, Yading
    Ma, Jun
    Yang, Xiaoping
    Rao, Chinmay
    Pai, Suraj
    Ghimire, Kanchan
    Feng, Xue
    Naser, Mohamed A.
    Fuller, Clifton D.
    Yousefirizi, Fereshteh
    Rahmim, Arman
    Chen, Huai
    Wang, Lisheng
    Prior, John O.
    Depeursinge, Adrien
    MEDICAL IMAGE ANALYSIS, 2022, 77
  • [23] A deep learning-based post-processing method for automated pulmonary lobe and airway trees segmentation using chest CT images in PET/CT
    Xing, Haiqun
    Zhang, Xin
    Nie, Yingbin
    Wang, Sicong
    Wang, Tong
    Jing, Hongli
    Li, Fang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (10) : 4747 - 4757
  • [24] Comparison of semi-automatic and manual segmentation methods for tumor delineation on head and neck squamous cell carcinoma (HNSCC) positron emission tomography (PET) images
    Philip, Mahima Merin
    Watts, Jessica
    Moeini, Seyedeh Niki Mir
    Musheb, Mohammed
    McKiddie, Fergus
    Welch, Andy
    Nath, Mintu
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (09):
  • [25] Automated Segmentation of Head Computed Tomography Images Using FSL
    Cauley, Keith A.
    Och, Joe
    Yorks, Patrick J.
    Fielden, Samuel W.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2018, 42 (01) : 104 - 110
  • [26] Automatic Brain Segmentation in Time-of-Flight MRA Images
    Forkert, N. D.
    Saering, D.
    Fiehler, J.
    Illiesz, T.
    Moeller, D.
    Handels, H.
    METHODS OF INFORMATION IN MEDICINE, 2009, 48 (05) : 399 - 407
  • [27] Knee Articular Cartilage Segmentation from MR Images: A Review
    Kumar, Dileep
    Gandhamal, Akash
    Talbar, Sanjay
    Hani, Ahmad Fadzil Mohd
    ACM COMPUTING SURVEYS, 2019, 51 (05)
  • [28] GLOBAL AND LOCAL ANOMALY DETECTORS FOR TUMOR SEGMENTATION IN DYNAMIC PET ACQUISITIONS
    Verdoja, F.
    Bonafe, B.
    Cavagnino, D.
    Grangetto, M.
    Bracco, C.
    Varetto, T.
    Racca, M.
    Stasi, M.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4131 - 4135
  • [29] JOINT VARIATIONAL SEGMENTATION OF CT-PET DATA FOR TUMORAL LESIONS
    Wojak, Julien
    Angelini, Elsa D.
    Bloch, Isabelle
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 217 - 220
  • [30] Contourlet-based active contour model for PET image segmentation
    Abdoli, M.
    Dierckx, R. A. J. O.
    Zaidi, H.
    MEDICAL PHYSICS, 2013, 40 (08)