Hermite and Laguerre 2D polynomials

被引:64
作者
Wünsche, A [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
关键词
D O I
10.1016/S0377-0427(00)00681-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define Hermite 2D polynomials H-m,H-n(U;x,y) and Laguerre 2D polynomials L-m,L-n(U;z,(z) over bar) as functions of two variables with an arbitrary 2D matrix U as parameter and discuss their properties and their explicit representation. Recursion relations and generating functions for these polynomials are derived. The advantage of the introduced Hermite and Laguerre 2D polynomials in comparison to the related usual two-variable Hermite polynomials is that they satisfy orthogonality relations in a direct way, whereas for the purpose of orthonormalization of the last, one has to introduce two different kinds of such polynomials which are biorthogonal to each other. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:665 / 678
页数:14
相关论文
共 18 条
[1]   BEAM TRANSFORMATIONS AND NONTRANSFORMED BEAMS [J].
ABRAMOCHKIN, E ;
VOLOSTNIKOV, V .
OPTICS COMMUNICATIONS, 1991, 83 (1-2) :123-135
[2]   PHASE-SPACE FORMALISM - THE GENERALIZED HARMONIC-OSCILLATOR FUNCTIONS [J].
DATTOLI, G ;
TORRE, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (10) :1197-1212
[3]   Coupled harmonic oscillators, generalized harmonic-oscillator eigenstates and coherent states [J].
Dattoli, G ;
Torre, A ;
Lorenzutta, S ;
Maino, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (07) :811-823
[4]  
Dattoli G., 1995, Ann. Numer. Math., V2, P211
[5]   PHOTON DISTRIBUTION FOR ONE-MODE MIXED LIGHT WITH A GENERIC GAUSSIAN WIGNER FUNCTION [J].
DODONOV, VV ;
MANKO, OV ;
MANKO, VI .
PHYSICAL REVIEW A, 1994, 49 (04) :2993-3001
[6]   NEW RELATIONS FOR 2-DIMENSIONAL HERMITE-POLYNOMIALS [J].
DODONOV, VV ;
MANKO, VI .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4277-4294
[7]   ASYMPTOTIC FORMULAS FOR 2-VARIABLE HERMITE-POLYNOMIALS [J].
DODONOV, VV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18) :6191-6203
[8]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[9]  
Fan H., 1984, Communications in Theoretical Physics, V3, P175
[10]   Generating functions for Hermite polynomials of arbitrary order [J].
Fernandez, FM .
PHYSICS LETTERS A, 1998, 237 (03) :189-191