A model of density waves in atomic structure of nanodiamond by molecular dynamics simulations

被引:11
作者
Skrobas, Kazimierz [1 ]
Stelmakh, Svitlana [1 ]
Gierlotka, Stanislaw [1 ]
Palosz, Bogdan [1 ]
机构
[1] Polish Acad Sci, Inst High Pressure Phys, Sokolowska 29-37, PL-01142 Warsaw, Poland
关键词
Nanodiamond; Molecular dynamics; DIAMOND; 111; SURFACES; ELECTRONIC-STRUCTURE; NANOCRYSTALLINE DIAMOND; HIGH-PRESSURE; GRAPHITIZATION; ENERGY; REAL;
D O I
10.1016/j.diamond.2018.10.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spherical and polyhedral diamond nanocrystals grains terminated by low-index atomic planes (100), (110), and (111) were examined using Molecular Dynamics (MD) simulations. Real space methodology (PDF analysis) was applied for examination of the internal structure of diamond nanograins through performance of virtual diffraction experiments for MD simulated models. The effect of the grain size on, (1), the bond length in the nearest neighbor coordination, (2), the overall lattice parameter, and (3), a presence of internal strains in individual grains were examined. It is shown that, (a), graphite-like bonds are present in the first 2-3 atomic layers, depending on the surface type, (b) in 2-3 nm grains the overall value of alp is about 0.5% larger than the reference diamond lattice parameter and it goes down to the reference diamond lattice in grains of about 10 nm in size, (c), in individual spherical grains the so called "density waves", propagating from the grain center towards the surface, are present. In the "general model" of nanodiamond structure the number of density maxima is the same for grains with sizes between 2.5 and 10 nm, but the amplitude of the waves diminishes with an increase in the grain size.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 39 条
  • [21] Analysis of short and long range atomic order in nanocrystalline diamonds with application of powder diffractometry
    Palosz, B
    Grzanka, E
    Gierlotka, S
    Stel'makh, S
    Pielaszek, R
    Bismayer, U
    Neuefeind, J
    Weber, HP
    Proffen, T
    Von Dreele, R
    Palosz, W
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2002, 217 (10): : 497 - 509
  • [22] Palosz B., 2008, P IUTAM S MOD NAN NA, P75, DOI DOI 10.1007/978-1-4020-9557-3_9
  • [23] Application of the apparent lattice parameter to determination of the core-shell structure of nanocrystals
    Palosz, Bogdan
    Stelmakh, Svetlana
    Grzanka, Ewa
    Gierlotka, Stanislaw
    Palosz, Witold
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2007, 222 (11): : 580 - 594
  • [24] Nanocrystals: breaking limitations of data analysis
    Palosz, Bogdan
    Grzanka, Ewa
    Gierlotka, Stanislaw
    Stelmakh, Svitlana
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2010, 225 (12): : 588 - 598
  • [25] High pressure study of graphitization of diamond crystals
    Pantea, C
    Qian, J
    Voronin, GA
    Zerda, TW
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (04) : 1957 - 1962
  • [26] Pantea C., 2006, NANODIAMOND COMPRESS, V1
  • [27] Partial graphitization of diamond crystals under high-pressure and high-temperature conditions
    Qian, J
    Pantea, C
    Voronin, G
    Zerda, TW
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 90 (03) : 1632 - 1637
  • [28] Softening of ultra-nanocrystalline diamond at low grain sizes
    Remediakis, Ioannis N.
    Kopidakis, Georgios
    Kelires, Pantelis C.
    [J]. ACTA MATERIALIA, 2008, 56 (18) : 5340 - 5344
  • [29] Defects and impurities in nanodiamonds: EPR, NMR and TEM study
    Shames, AI
    Panich, AM
    Kempinski, W
    Alexenskii, AE
    Baidakova, MV
    Dideikin, AT
    Osipov, VY
    Siklitski, VI
    Osawa, E
    Ozawa, M
    Vul', AY
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2002, 63 (11) : 1993 - 2001
  • [30] Science and engineering of nanodiamond particle surfaces for biological applications
    Shenderova, Olga A.
    McGuire, Gary E.
    [J]. BIOINTERPHASES, 2015, 10 (03) : 1 - 23