Prospective End-to-End Internet of Bio-Nano Things Network Based in a Machine Learning Algorithm To Restore the Flux of Insuline in Prediabetic Patients

被引:0
作者
Nieto-Chaupis, Huber [1 ]
机构
[1] Univ Privada Norte, Res Off, Campus Los Olivos,Av Alfredo Mendiola 6062, Lima 15306, Peru
来源
2019 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON) | 2019年
关键词
Beta Cells; Machine Learning; Internet of Bio-Nano Things;
D O I
10.1109/chilecon47746.2019.8988030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a physics-based theory and its computational simulation on the performance of a prospective nanodevice based on Machine Learning inside of an Internet of Bio-Nano Things networking to carry out the optimization of artificial incoming of Calcium2+ ions in beta cells aimed to push out granules of insulin. Although the engineered nanodevices can carry out an optimal task, the inclusion of a Machine Learning algorithm would guarantee the wellness as to avoid scenarios where nanodevices might be running with highest systematic errors.
引用
收藏
页数:4
相关论文
共 10 条
  • [1] An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things
    Abbasi, Naveed A.
    Akan, Ozgur B.
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (08) : 783 - 791
  • [2] THE INTERNET OF BIO-NANOTHINGS
    Akyildiz, I. F.
    Pierobon, M.
    Balasubramaniam, S.
    Koucheryavy, Y.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2015, 53 : 32 - 40
  • [3] Casas P, 2018, IEEE WIREL COMMUNN, P242, DOI 10.1109/WCNCW.2018.8369024
  • [4] Jackson J. D., 1999, CLASSICAL ELECTRODYN
  • [5] Nieto-Chaupis Huber, 2019, 11 EAI INT C BICT 20
  • [6] Nieto-Chaupis Huber, 2017 IEEE 17 INT C N
  • [7] Nieto-Chaupis Huber, 2019 IEEE 9 ANN COMM
  • [8] Nieto-Chaupis Huber, 2018, 13 NAN MAT DEV C NMD
  • [9] Nieto-Chaupis Huber, 2019 INT WORKSH ANT
  • [10] Tanaka T., 1989, IEEE International Workshop on Tools for Artificial Intelligence. Architectures, Languages and Algorithms, P77, DOI 10.1109/TAI.1989.65305