Truncation error analysis of lattice Boltzmann methods

被引:108
|
作者
Holdych, DJ
Noble, DR
Georgiadis, JG
Buckius, RO
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国能源部;
关键词
lattice Boltzmann; truncation error; Chapman-Enskog; finite difference;
D O I
10.1016/j.jcp.2003.08.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A truncation error analysis is performed for models based on the lattice Boltzmann (LB) equation. This analysis involves two steps: the recursive application of the LB equation and a Taylor series expansion. Unlike previous analytical studies of LB methods, the present work does not assume an asymptotic relationship between the temporal and spatial discretization parameters or between the probability distribution function, f, and its equilibrium distribution, f(eq). Effective finite difference stencils are derived for both the distribution function and the primitive variables, i.e., density and velocity. The governing partial differential equations are also recovered. The associated truncation errors are derived and the results are validated by numerical simulation of analytic flows. Analysis of the truncation errors elucidates the roles of the kinetic theory relaxation parameter, tau, and the discretization parameters, Deltax and Deltat. The effects of initial and boundary conditions are also addressed and are shown to significantly affect the overall accuracy of the method. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:595 / 619
页数:25
相关论文
共 50 条
  • [41] The estimation of truncation error by τ-estimation revisited
    Fraysse, F.
    de Vicente, J.
    Valero, E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3457 - 3482
  • [42] Minimization of the truncation error by grid adaptation
    Yamaleev, NK
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) : 459 - 497
  • [43] Analysis of open boundary effects in unsteady lattice Boltzmann simulations
    Izquierdo, Salvador
    Martinez-Lera, Paula
    Fueyo, Norberto
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (05) : 914 - 921
  • [44] A note on the truncation error for the GE scheme
    Zhang, BL
    Wan, ZS
    Evans, DJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (09) : 1009 - 1012
  • [45] On the accuracy of multigrid truncation error estimates
    Fulton, SR
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 15 : 29 - 37
  • [46] Diffusion Lattice Boltzmann scheme on a orthorhombic lattice
    van der Sman, RGM
    Ernst, MH
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) : 203 - 217
  • [47] Diffusion Lattice Boltzmann Scheme on a Orthorhombic Lattice
    R. G. M. van der Sman
    M. H. Ernst
    Journal of Statistical Physics, 1999, 94 : 203 - 217
  • [48] ERROR ANALYSIS OF SPHERICAL HARMONIC SOUNDFIELD REPRESENTATIONS IN TERMS OF TRUNCATION AND ALIASING ERRORS
    Brown, Stefanie
    Sen, Deep
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 360 - 364
  • [49] Truncation Error Analysis on Reconstruction of Signal From Unsymmetrical Local Average Sampling
    Pang, Yanwei
    Song, Zhanjie
    Li, Xuelong
    Pan, Jing
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (10) : 2100 - 2104
  • [50] Momentum transfer correction for macroscopic-gradient boundary conditions in lattice Boltzmann methods
    Izquierdo, Salvador
    Fueyo, Norberto
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (07) : 2497 - 2506