共 50 条
Extension of the spectral volume method to high-order boundary representation
被引:65
作者:
Wang, ZJ
Liu, Y
机构:
[1] Iowa State Univ, Dept Aerosp Engn, Coll Engn, Ames, IA 50011 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词:
high order;
finite volume;
unstructured grids;
spectral volume;
boundary condition;
D O I:
10.1016/j.jcp.2005.05.022
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
In this paper, the spectral volume method is extended to the two-dimensional Euler equations with curved boundaries. It is well-known that high-order methods can achieve higher accuracy on coarser meshes than low-order methods. In order to realize the advantage of the high-order spectral volume method over the low order finite volume method, it is critical that solid wall boundaries be represented with high-order polynomials compatible with the order of the interpolation for the state variables. Otherwise, numerical errors generated by the low-order boundary representation may overwhelm any potential accuracy gains offered by high-order methods. Therefore, more general types of spectral volumes (or elements) with curved edges are used near solid walls to approximate the boundaries with high fidelity. The importance of this high-order boundary representation is demonstrated with several well-know inviscid flow test cases, and through comparisons with a second-order finite volume method. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 178
页数:25
相关论文
共 50 条