DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEM AND ITS FIRST INTEGRALS

被引:9
作者
Feng, Zhaosheng [1 ]
Gao, Guangyue [1 ]
Cui, Jing [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
关键词
First integral; Duffing oscillator; van der Pol oscillator; diffeomorphism; Lie symmetry method; Lie point symmetry; prolonged infinitesimal operator; parametric solution; ORDINARY DIFFERENTIAL-EQUATIONS; DE-VRIES EQUATION; HELMHOLTZ OSCILLATOR; INTEGRABILITY; SYMMETRIES;
D O I
10.3934/cpaa.2011.10.1377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, under certain parametric conditions we are concerned with the first integrals of the Duffing-van der Pol-type oscillator system, which include the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. We apply the Lie symmetry method to find two nontrivial infinitesimal generators and use them to construct canonical variables. Through the inverse transformations we obtain the first integrals of the original oscillator system under the given parametric conditions, and some particular cases such as the damped Duffing equation and the van der Pol oscillator system are discussed accordingly.
引用
收藏
页码:1377 / 1392
页数:16
相关论文
共 50 条
[41]   On the limit cycles, period-doubling, and quasi-periodic solutions of the forced Van der Pol-Duffing oscillator [J].
Jifeng Cui ;
Wenyu Zhang ;
Zeng Liu ;
Jianglong Sun .
Numerical Algorithms, 2018, 78 :1217-1231
[42]   On the limit cycles, period-doubling, and quasi-periodic solutions of the forced Van der Pol-Duffing oscillator [J].
Cui, Jifeng ;
Zhang, Wenyu ;
Liu, Zeng ;
Sun, Jianglong .
NUMERICAL ALGORITHMS, 2018, 78 (04) :1217-1231
[43]   Realization of Proper Nonlinear Systems and Its Application to the Disturbance Observer for Van der Pol Oscillator [J].
Halas, Miroslav ;
Dodek, Martin .
IEEE ACCESS, 2025, 13 :33220-33230
[44]   Super-harmonic resonance of fractional-order van der Pol oscillator [J].
Wei Peng ;
Shen Yong-Jun ;
Yang Shao-Pu .
ACTA PHYSICA SINICA, 2014, 63 (01)
[45]   Modified Van der Pol (Vdp) Oscillator based Cardiac Pacemakers [J].
Ahmed, Syed Hassaan ;
Javed, Sikandar ;
KashifAbbas, Syed ;
Hussain, Sajjad .
PROCEEDINGS OF THE 2016 19TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2016, :176-183
[46]   Discriminating dynamical from additive noise in the Van der Pol oscillator [J].
Boschi, CD ;
Ortega, GJ ;
Louis, E .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 171 (1-2) :8-18
[47]   Analysis of the van der pol oscillator containing derivatives of fractional order [J].
Barbosa, Ramiro S. ;
Machado, J. A. Tenreiro ;
Vinagre, B. M. ;
Calderon, A. J. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1291-1301
[48]   Synchronization of Van der Pol oscillator by external voltage of double frequency [J].
Filanovsky, I. M. ;
Allam, A. ;
Oliveira, Luis Bica ;
Fernandes, Jorge R. .
IEEE MWSCAS'06: PROCEEDINGS OF THE 2006 49TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS,, 2006, :56-+
[49]   Control Design for the Compensation of Limit Cycles in Van Der Pol Oscillator [J].
Batool, Aisha ;
Hanif, Athar ;
Hamayun, M. T. ;
Ali, S. M. Nawazish .
2017 13TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET 2017), 2017,
[50]   Adaptive Dynamic Programming for Optimal Control of van der Pol Oscillator [J].
Ji, Zheng ;
Lou, Xuyang .
PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, :1537-1542