DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEM AND ITS FIRST INTEGRALS

被引:9
作者
Feng, Zhaosheng [1 ]
Gao, Guangyue [1 ]
Cui, Jing [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
关键词
First integral; Duffing oscillator; van der Pol oscillator; diffeomorphism; Lie symmetry method; Lie point symmetry; prolonged infinitesimal operator; parametric solution; ORDINARY DIFFERENTIAL-EQUATIONS; DE-VRIES EQUATION; HELMHOLTZ OSCILLATOR; INTEGRABILITY; SYMMETRIES;
D O I
10.3934/cpaa.2011.10.1377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, under certain parametric conditions we are concerned with the first integrals of the Duffing-van der Pol-type oscillator system, which include the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. We apply the Lie symmetry method to find two nontrivial infinitesimal generators and use them to construct canonical variables. Through the inverse transformations we obtain the first integrals of the original oscillator system under the given parametric conditions, and some particular cases such as the damped Duffing equation and the van der Pol oscillator system are discussed accordingly.
引用
收藏
页码:1377 / 1392
页数:16
相关论文
共 50 条
[31]   A family of periodic orbits for the extended Hamiltonian system of the Van der Pol oscillator [J].
Ginoux, Jean -Marc ;
Llibre, Jaume .
JOURNAL OF GEOMETRY AND PHYSICS, 2023, 183
[32]   Stochastic resonance and bearing fault diagnosis basedon a Duffing- Van der Pol strongly coupled system [J].
Zhang G. ;
Wu X. .
Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (19) :266-276
[33]   Primary resonance of fractional-order van der Pol oscillator [J].
Shen, Yong-Jun ;
Wei, Peng ;
Yang, Shao-Pu .
NONLINEAR DYNAMICS, 2014, 77 (04) :1629-1642
[34]   Symplectic Dynamics and Simultaneous Resonance Analysis of Memristor Circuit Based on Its van der Pol Oscillator [J].
Yang, Baonan ;
Wang, Zhen ;
Tian, Huaigu ;
Liu, Jindong .
SYMMETRY-BASEL, 2022, 14 (06)
[35]   Analysis of Parameters Distribution of EEG Signals for Five Epileptic Seizure Phases Modeled by Duffing Van Der Pol Oscillator [J].
Szuflitowska, Beata ;
Orlowski, Przemyslaw .
COMPUTATIONAL SCIENCE - ICCS 2022, PT III, 2022, 13352 :188-201
[36]   Dynamical property analysis of fractionally damped van der pol oscillator and its application [J].
Zhong, Qiuhui ;
Zhang, Chunrui .
2012 INTERNATIONAL WORKSHOP ON IMAGE PROCESSING AND OPTICAL ENGINEERING, 2012, 8335
[37]   Investigating torus bifurcations in the forced Van der Pol oscillator [J].
Krauskopf, B ;
Osinga, HM .
NUMERICAL METHODS FOR BIFURCATION PROBLEMS AND LARGE-SCALE DYNAMICAL SYSTEMS, 2000, 119 :199-208
[38]   Chaotic van der Pol Oscillator Control Algorithm Comparison [J].
Ribordy, Lauren ;
Sands, Timothy .
DYNAMICS, 2023, 3 (01) :202-213
[39]   A New Approach to Van der Pol's Oscillator Problem [J].
Khan, Yasir ;
Madani, M. ;
Yildirim, A. ;
Abdou, M. A. ;
Faraz, Naeem .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11) :620-624
[40]   Analytic approximate solutions of the cubic-quintic Duffing-van der Pol equation with two-external periodic forcing terms: Stability analysis [J].
Ghaleb, A. F. ;
Abou-Dina, M. S. ;
Moatimid, G. M. ;
Zekry, M. H. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 180 :129-151