Boundary regularity for elliptic systems with p, q-growth

被引:20
|
作者
Boegelein, Verena [1 ]
Duzaar, Frank [2 ]
Marcellini, Paolo [3 ]
Scheven, Christoph [4 ]
机构
[1] Univ Salzburg, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
[2] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[4] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
关键词
Boundary regularity; Non -standard growth; Gradient estimates; q -growth conditions; General growth conditions; Elliptic equations and systems; LIPSCHITZ REGULARITY; MINIMIZERS; FUNCTIONALS; EQUATIONS; CALCULUS; EXISTENCE; INTEGRALS; GRADIENT; MINIMA;
D O I
10.1016/j.matpur.2021.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the boundary regularity of minimizers of convex integral functionals with nonstandard p, q-growth and with Uhlenbeck structure. We consider arbitrary convex domains omega and homogeneous Dirichlet data on some part Gamma subset of partial differential omega of the boundary. For the integrand we assume only a non-standard p, q-growth condition. We establish Lipschitz regularity of minimizers up to Gamma, provided the gap between the growth exponents p and q is not too large, more precisely if 1 < p < q < p(1 + n2 ). To our knowledge, this is the first boundary regularity result under a non-standard p, q-growth condition.
引用
收藏
页码:250 / 293
页数:44
相关论文
共 50 条