Boundary regularity for elliptic systems with p, q-growth

被引:20
|
作者
Boegelein, Verena [1 ]
Duzaar, Frank [2 ]
Marcellini, Paolo [3 ]
Scheven, Christoph [4 ]
机构
[1] Univ Salzburg, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
[2] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[4] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
关键词
Boundary regularity; Non -standard growth; Gradient estimates; q -growth conditions; General growth conditions; Elliptic equations and systems; LIPSCHITZ REGULARITY; MINIMIZERS; FUNCTIONALS; EQUATIONS; CALCULUS; EXISTENCE; INTEGRALS; GRADIENT; MINIMA;
D O I
10.1016/j.matpur.2021.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the boundary regularity of minimizers of convex integral functionals with nonstandard p, q-growth and with Uhlenbeck structure. We consider arbitrary convex domains omega and homogeneous Dirichlet data on some part Gamma subset of partial differential omega of the boundary. For the integrand we assume only a non-standard p, q-growth condition. We establish Lipschitz regularity of minimizers up to Gamma, provided the gap between the growth exponents p and q is not too large, more precisely if 1 < p < q < p(1 + n2 ). To our knowledge, this is the first boundary regularity result under a non-standard p, q-growth condition.
引用
收藏
页码:250 / 293
页数:44
相关论文
共 50 条
  • [1] LOCAL REGULARITY FOR ELLIPTIC SYSTEMS WITH p, q-GROWTH
    Cupini, Giovanni
    Mascolo, Elvira
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2015, 1 : 15 - 38
  • [2] Lipschitz regularity for degenerate elliptic integrals with p, q-growth
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    di Napoli, Antonia Passarelli
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, : 443 - 465
  • [3] EXISTENCE AND REGULARITY FOR ELLIPTIC EQUATIONS UNDER p,q-GROWTH
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (7-8) : 693 - 724
  • [4] EXISTENCE OF WEAK SOLUTIONS FOR ELLIPTIC SYSTEMS WITH p, q-GROWTH
    Cupini, Giovanni
    Leonetti, Francesco
    Mascolo, Elvira
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 645 - 658
  • [5] REGULARITY AND EXISTENCE OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH P,Q-GROWTH CONDITIONS
    MARCELLINI, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) : 1 - 30
  • [6] Nonuniformly elliptic energy integrals with p, q-growth
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 312 - 324
  • [7] Regularity for Nonuniformly Elliptic Equations with p,q-Growth and Explicit x,u-Dependence
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (04)
  • [8] WEAK DIFFERENTIABILITY FOR SOLUTIONS TO NONLINEAR ELLIPTIC-SYSTEMS WITH P, Q-GROWTH CONDITIONS
    LEONETTI, F
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 162 : 349 - 366
  • [9] Regularity results for a class of obstacle problems with p, q-growth conditions
    Caselli, M.
    Eleuteri, M.
    di Napoli, A. Passarelli
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [10] Parabolic Systems with p, q-Growth: A Variational Approach
    Verena Bögelein
    Frank Duzaar
    Paolo Marcellini
    Archive for Rational Mechanics and Analysis, 2013, 210 : 219 - 267