Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries

被引:62
作者
Guo, Sijie [1 ,2 ,3 ]
Li, Yutao [4 ,5 ]
Li, Bing [1 ,2 ]
Grundish, Nicholas S. [4 ,5 ]
Cao, An-Min [1 ,2 ,3 ]
Sun, Yong-Gang [1 ,2 ]
Xu, Yan-Song [1 ,2 ]
Ji, Yanglimin [3 ,6 ]
Qiao, Yan [3 ,6 ]
Zhang, Qinghua [7 ]
Meng, Fan-Qi [7 ]
Zhao, Zhi-Hao [1 ,2 ,3 ]
Wang, Dong [1 ,2 ,3 ]
Zhang, Xing [1 ,2 ,3 ]
Gu, Lin [7 ]
Yu, Xiqian [7 ]
Wan, Li-Jun [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[5] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[6] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS,Lab Polymer Phys &, Beijing 100190, Peoples R China
[7] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-CHEMISTRY; AQUEOUS-SOLUTION; ELECTROLYTE; TRANSITION;
D O I
10.1021/jacs.1c10872
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The application of solid-state batteries (SSBs) is challenged by the inherently poor interfacial contact between the solid-state electrolyte (SSE) and the electrodes, typically a metallic lithium anode. Building artificial intermediate nanofilms is effective in tackling this roadblock, but their implementation largely relies on vapor-based techniques such as atomic layer deposition, which are expensive, energy-intensive, and time-consuming due to the monolayer deposited per cycle. Herein, an easy and low-cost wet-chemistry fabrication process is used to engineer the anode/solid electrolyte interface in SSBs with nanoscale precision. This coordination-assisted deposition is initiated with polyacrylate acid as a functional polymer to control the surface reaction, which modulates the distribution and decomposition of metal precursors to reliably form a uniform crack-free and flexible nanofilm of a large variety of metal oxides. For demonstration, artificial Al2O3 interfacial nanofilms were deposited on a ceramic SSE, typically garnet-structured Li6.5La3Zr1.5Ta0.5O12 (LLZT), that led to a significant decrease in the Li/LLZT interfacial resistance (from 2079.5 to 8.4 Omega cm(2)) as well as extraordinarily long cycle life of the assembled SSBs. This strategy enables the use of a nickel-rich LiNi0.83Co0.07Mn0.1O2 cathode to deliver a reversible capacity of 201.5 mAh g(-1) at a considerable loading of 4.8 mg cm(-2), featuring performance metrics for an SSB that is competitive with those of traditional Li-ion systems. Our study demonstrates the potential of solution-based routes as an affordable and scalable manufacturing alternative to vapor-based deposition techniques that can accelerate the development of SSBs for practical applications.
引用
收藏
页码:2179 / 2188
页数:10
相关论文
共 41 条
[1]   A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2 [J].
Cai, Zhao ;
Ou, Yangtao ;
Zhang, Bao ;
Wang, Jindi ;
Fu, Lin ;
Wan, Mintao ;
Li, Guocheng ;
Wang, Wenyu ;
Wang, Li ;
Jiang, Jianjun ;
Seh, Zhi Wei ;
Hu, Enyuan ;
Yang, Xiao-Qing ;
Cui, Yi ;
Sun, Yongming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (08) :3143-3152
[2]   Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability [J].
Chen, Yue ;
He, Minghui ;
Zhao, Ning ;
Fu, Jingming ;
Huo, Hanyu ;
zhang, Tao ;
Li, Yiqi ;
Xu, Fangfang ;
Guo, Xiangxin .
JOURNAL OF POWER SOURCES, 2019, 420 :15-21
[3]   Tuning the Anode-Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries [J].
Deng, Tao ;
Ji, Xiao ;
Zhao, Yang ;
Cao, Longsheng ;
Li, Shuang ;
Hwang, Sooyeon ;
Luo, Chao ;
Wang, Pengfei ;
Jia, Haiping ;
Fan, Xiulin ;
Lu, Xiaochuan ;
Su, Dong ;
Sun, Xueliang ;
Wang, Chunsheng ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2020, 32 (23)
[4]   A versatile sol-gel route to monolithic oxidic gels via polyacrylic acid template [J].
Du, Ai ;
Zhou, Bin ;
Shen, Jun ;
Gui, Jiayin ;
Zhong, Yanhong ;
Liu, Chunze ;
Zhang, Zhihua ;
Wu, Guangming .
NEW JOURNAL OF CHEMISTRY, 2011, 35 (05) :1096-1102
[5]   Building a Better Li-Garnet Solid Electrolyte/Metallic Li Interface with Antimony [J].
Dubey, Romain ;
Sastre, Jordi ;
Cancellieri, Claudia ;
Okur, Faruk ;
Forster, Alexander ;
Pompizii, Lea ;
Priebe, Agnieszka ;
Romanyuk, Yaroslav E. ;
Jeurgens, Lars P. H. ;
Kovalenko, Maksym, V ;
Kravchyk, Kostiantyn, V .
ADVANCED ENERGY MATERIALS, 2021, 11 (39)
[6]   Spectroscopic approaches to the study of the interaction of aluminum with humic substances [J].
Elkins, KM ;
Nelson, DJ .
COORDINATION CHEMISTRY REVIEWS, 2002, 228 (02) :205-225
[7]   Interaction between Al3+ and Acrylic Acid and Polyacrylic Acid in Acidic Aqueous Solution: A Model Experiment for the Behavior of Al3+ in Acidified Soil Solution [J].
Etou, Mayumi ;
Masaki, Yuka ;
Tsuji, Yutaka ;
Saito, Tomoyuki ;
Bai, Shuqin ;
Nishida, Ikuko ;
Okaue, Yoshihiro ;
Yokoyama, Takushi .
ANALYTICAL SCIENCES, 2011, 27 (01) :111-115
[8]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291
[9]   Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Amorphous Carbon Layer [J].
Feng, Wuliang ;
Dong, Xiaoli ;
Zhang, Xiang ;
Lai, Zhengzhe ;
Li, Panlong ;
Wang, Congxiao ;
Wang, Yonggang ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5346-5349
[10]   Study of the Reactions between Ni-Rich Positive Electrode Materials and Aqueous Solutions and their Relation to the Failure of Li-Ion Cells [J].
Hamam, Ines ;
Zhang, Ning ;
Liu, Aaron ;
Johnson, M. B. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)