Finite time singularities for a class of generalized surface quasi-geostrophic equations

被引:20
作者
Dong, Hongjie [1 ]
Li, Dong [2 ]
机构
[1] Brown Univ, Dept Appl Math, Providence, RI 02912 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Mellin transform; finite-time singularities; quasi-geostrophic equations; global well-posedness;
D O I
10.1090/S0002-9939-08-09328-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a class of generalized surface quasi-geostrophic equations. We show that in the inviscid case certain radial solutions develop gradient blow-up in finite time. In the critical dissipative case, the equations are globally well-posed with arbitrary H-1 initial data.
引用
收藏
页码:2555 / 2563
页数:9
相关论文
共 27 条
[1]   An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations [J].
Balodis, Pedro ;
Cordoba, Antonio .
ADVANCES IN MATHEMATICS, 2007, 214 (01) :1-39
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]  
CAFFARELLI L, DRIFT DIFFUSION EQUA
[4]  
CARRILO JA, ASYMPTOTIC BEHAV SUB
[5]   Finite time singularities in a 1D model of the quasi-geostrophic equation [J].
Chae, D ;
Córdoba, A ;
Córdoba, D ;
Fontelos, MA .
ADVANCES IN MATHEMATICS, 2005, 194 (01) :203-223
[6]   A SIMPLE ONE-DIMENSIONAL MODEL FOR THE 3-DIMENSIONAL VORTICITY EQUATION [J].
CONSTANTIN, P ;
LAX, PD ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (06) :715-724
[7]   Nonsingular surface quasi-geostrophic flow [J].
Constantin, P ;
Nie, Q ;
Schorghofer, N .
PHYSICS LETTERS A, 1998, 241 (03) :168-172
[8]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[9]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[10]   Formation of singularities for a transport equation with nonlocal velocity [J].
Córdoba, A ;
Córdoba, D ;
Fontelos, MA .
ANNALS OF MATHEMATICS, 2005, 162 (03) :1377-1389