Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016

被引:5
|
作者
Fradera, Xavier [1 ]
Verras, Andreas [2 ]
Hu, Yuan [2 ]
Wang, Deping [3 ]
Wang, Hongwu [2 ]
Fells, James I. [2 ]
Armacost, Kira A. [3 ]
Crespo, Alejandro [2 ]
Sherborne, Brad [2 ]
Wang, Huijun [2 ]
Peng, Zhengwei [2 ]
Gao, Ying-Duo [2 ]
机构
[1] Merck & Co Inc, 33 Ave Louis Pasteur, Boston, MA 02215 USA
[2] Merck & Co Inc, 2000 Galloping Hill Rd, Kenilworth, NJ 07033 USA
[3] Merck & Co Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
关键词
Pose prediction; D3R Grand Challenge 2016; Docking; Molecular dynamics; FXR; PROTEIN-LIGAND DOCKING; MOLECULAR-DYNAMICS; SCORING FUNCTIONS; BINDING ENTROPY; DATA-BANK; VALIDATION; IDENTIFICATION; GENERATION; ALGORITHM; ACCURACY;
D O I
10.1007/s10822-017-0053-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection. We evaluated the success of our predictions by method, chemotype, and relevance of publicly available data. For the overall data set, ensemble docking, visual inspection, and molecular dynamics guided pose prediction performed the best with overall mean RMSDs of 2.4, 2.2, and 2.2 respectively. For several individual challenge molecules, the best performing method is evaluated in light of that particular ligand. We also describe the protein, ligand, and public information data preparations that are typical of our binding mode prediction workflow.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 50 条
  • [21] Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4
    Kotelnikov, Sergei
    Alekseenko, Andrey
    Liu, Cong
    Ignatov, Mikhail
    Padhorny, Dzmitry
    Brini, Emiliano
    Lukin, Mark
    Coutsias, Evangelos
    Dill, Ken A.
    Kozakov, Dima
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 179 - 189
  • [22] Docking-undocking combination applied to the D3R Grand Challenge 2015
    Sergio Ruiz-Carmona
    Xavier Barril
    Journal of Computer-Aided Molecular Design, 2016, 30 : 805 - 815
  • [23] D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions
    Symon Gathiaka
    Shuai Liu
    Michael Chiu
    Huanwang Yang
    Jeanne A. Stuckey
    You Na Kang
    Jim Delproposto
    Ginger Kubish
    James B. Dunbar
    Heather A. Carlson
    Stephen K. Burley
    W. Patrick Walters
    Rommie E. Amaro
    Victoria A. Feher
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2016, 30 : 651 - 668
  • [24] Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
    Selwa, Edithe
    Martiny, Virginie Y.
    Iorga, Bogdan I.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 829 - 839
  • [25] Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
    Edithe Selwa
    Virginie Y. Martiny
    Bogdan I. Iorga
    Journal of Computer-Aided Molecular Design, 2016, 30 : 829 - 839
  • [26] DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
    Veronica Salmaso
    Mattia Sturlese
    Alberto Cuzzolin
    Stefano Moro
    Journal of Computer-Aided Molecular Design, 2016, 30 : 773 - 789
  • [27] D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions
    Gathiaka, Symon
    Liu, Shuai
    Chiu, Michael
    Yang, Huanwang
    Stuckey, Jeanne A.
    Kang, You Na
    Delproposto, Jim
    Kubish, Ginger
    Dunbar, James B., Jr.
    Carlson, Heather A.
    Burley, Stephen K.
    Walters, W. Patrick
    Amaro, Rommie E.
    Feher, Victoria A.
    Gilson, Michael K.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 651 - 668
  • [28] DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
    Salmaso, Veronica
    Sturlese, Mattia
    Cuzzolin, Alberto
    Moro, Stefano
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 773 - 789
  • [29] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Eddy Elisée
    Vytautas Gapsys
    Nawel Mele
    Ludovic Chaput
    Edithe Selwa
    Bert L. de Groot
    Bogdan I. Iorga
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1031 - 1043
  • [30] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Elisee, Eddy
    Gapsys, Vytautas
    Mele, Nawel
    Chaput, Ludovic
    Selwa, Edithe
    de Groot, Bert L.
    Iorga, Bogdan I.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1031 - 1043