Experimental studies on compressive and tensile strength of cement-stabilized soil reinforced with rice husks and polypropylene fibers

被引:47
|
作者
Xiao, Yu [1 ,2 ]
Tong, Liyuan [1 ,2 ,3 ,5 ]
Che, Hongbo [1 ,2 ]
Guo, Qiwen [4 ]
Pan, Huangsong [1 ,2 ]
机构
[1] Southeast Univ, Sch Transportat, Nanjing 210096, Peoples R China
[2] Inst Future Underground Space, Inst Geotech Engn, Nanjing 210096, Peoples R China
[3] Jiangsu Key Lab Urban Underground Engn & Environm, Nanjing 210096, Peoples R China
[4] Chengdu Transportat Bur, Chengdu 610042, Peoples R China
[5] Southeast Univ, Jiulonghu Campus, Nanjing 210096, Peoples R China
关键词
Rice husk; Polypropylene fiber; Cement -stabilized soil; Fiber reinforced soil; Compressive strength; Tensile strength; MECHANICAL-PROPERTIES; CONSTRUCTION MATERIALS; FLY-ASH; BEHAVIOR; BLOCKS; WASTE; PERFORMANCE; DURABILITY; INCLUSION; FAILURE;
D O I
10.1016/j.conbuildmat.2022.128242
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper innovatively proposes the use of natural rice husk for reinforcing stabilized soil, and the experimental results exhibit the application potential. The reinforcement effects of rice husks and polypropylene fibers on mechanical properties in three types of cement-stabilized soils (clayey sand (SC), sandy clay of low liquid limit (CLS), and low liquid limit clay (CL)) were comparatively studied by conducting compressive strength tests and splitting tensile strength tests. The influence parameters evaluated were the fiber content, the initial moisture content, the curing time, and the fiber type. The experimental results reveal that the addition of rice husks and polypropylene fibers in cement-stabilized soil significantly improve the unconfined compressive strength (UCS) and split tensile strength (STS). The UCS and STS of fiber-reinforced soil exhibit the same trends of increasing first and then decreasing with the increase of fiber content, and the most effective strengthening range of fiber content is 0.3%-0.5%. Rice husk shows the better reinforcement effect on UCS in cement-stabilized SC and CLS, and shows better reinforcement effect on STS in three types of cement-stabilized soils, while polypropylene fiber only shows the better reinforcement effect on UCS in cement-stabilized CL.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Impact of Mixing Methods and Cement Dosage on Unconfined Compressive Strength of Cement-Stabilized Macadam
    Zhao, Kaiyin
    Zhao, Lijun
    Hou, Jinru
    Feng, Zhongxu
    Jiang, Wenzhi
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2022, 16 (01)
  • [32] Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction
    Teijon-Lopez-Zuazo, E.
    Vega-Zamanillo, A.
    Calzada-Perez, M. A.
    Juli-Gandara, L.
    MATERIALES DE CONSTRUCCION, 2020, 70 (338)
  • [33] Glass fiber reinforced rammed earth stabilized with cement and bagasse ash: empirical relationship between tensile and compressive strength - Part A
    Badami, Shrithi S.
    Nethravathi, S.
    COGENT ENGINEERING, 2024, 11 (01):
  • [34] STRENGTH CHARACTERISTICS OF CEMENT-RICE HUSK ASH STABILISED SAND-CLAY MIXTURE REINFORCED WITH POLYPROPYLENE FIBERS
    Ghorbani, Ali
    Salimzadehshooiili, Maysam
    Medzvieckas, Jurgis
    Kliukas, Romualdas
    BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING, 2018, 13 (04): : 447 - 474
  • [35] Negative Effect of Tannic Acid on the Strength of Cement-Stabilized Soil
    Ju, Hwanik
    Abdelaziz, Sherif L.
    Filz, George M.
    GEO-CONGRESS 2023: SOIL IMPROVEMENT, GEOENVIRONMENTAL, AND SUSTAINABILITY, 2023, 339 : 520 - 528
  • [36] The influence analysis of groundwater environment on the strength of cement-stabilized soil
    Lv, Sanhe
    Dong, Mengrong
    Yang, Junjie
    Miao, Jiali
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 622 - 627
  • [37] Influence of Periwinkle Shell Ash on the Strength Properties of Cement-Stabilized Lateritic Soil
    Etim, Roland Kufre
    Ekpo, David Ufot
    Ebong, Uduak Bassey
    Usanga, Idorenyin Ndarake
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2022, 15 (05) : 1062 - 1078
  • [38] Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement
    Chhun, Kean Thai
    Yune, Chan-Young
    GEOMECHANICS AND ENGINEERING, 2023, 33 (03) : 261 - 269
  • [39] Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil
    Tang, Chaosheng
    Shi, Bin
    Gao, Wei
    Chen, Fengjun
    Cai, Yi
    GEOTEXTILES AND GEOMEMBRANES, 2007, 25 (03) : 194 - 202
  • [40] Bond Strength of Coir Fibers in Cement-Stabilized Rammed Earth Matrix
    Rathod, R. Sri Bhanupratap
    Reddy, B. V. Venkatarama
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (11)