A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation

被引:15
作者
Feng, Landi [1 ]
Lin, Hao [1 ]
Kang, Minghui [1 ]
Ren, Yumeng [1 ]
Yu, Xi [1 ]
Xu, Zhanpeng [1 ]
Wang, Shuo [1 ]
Li, Ting [1 ]
Yang, Wenjie [1 ]
Hu, Quanjun [1 ]
机构
[1] Sichuan Univ, Coll Life Sci, Minist Educ, Key Lab Bioresource & Ecoenvironm, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Crucihimalaya; adaptation; de novo genome; karyotype evolution; high altitude; PHYLOGENETIC ANALYSIS; SELF-INCOMPATIBILITY; WEB SERVER; BRASSICACEAE; GENES; TOOL; ARABIDOPSIS; ANNOTATION; SYSTEM; IDENTIFICATION;
D O I
10.1093/dnares/dsac004
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
It remains largely unknown how plants adapt to high-altitude habitats. Crucihimalaya (Brassicaceae) is an alpine genus occurring in the Qinghai-Tibet Plateau characterized by cold temperatures and strong ultraviolet radiation. Here, we generated a chromosome-level genome for C. lasiocarpa with a total size of 255.8 Mb and a scaffold N50 size of 31.9 Mb. We first examined the karyotype origin of this species and found that the karyotype of five chromosomes resembled the ancestral karyotype of the Brassicaceae family, while the other three showed strong chromosomal structural variations. In combination with the rough genome sequence of another congener (C. himalaica), we found that the significantly expanded gene families and positively selected genes involved in alpine adaptation have occurred since the origin of this genus. Our new findings provide valuable information for the chromosomal karyotype evolution of Brassicaceae and investigations of high-altitude environment adaptation of the genus.
引用
收藏
页数:11
相关论文
共 85 条
  • [1] Generic placement of species excluded from Arabidopsis (Brassicaceae)
    Al-Shehbaz, IA
    O'Kane, SL
    Price, RA
    [J]. NOVON, 1999, 9 (03): : 296 - 307
  • [2] The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
    Bairoch, A
    Apweiler, R
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 45 - 48
  • [3] Hi-C: A comprehensive technique to capture the conformation of genomes
    Belton, Jon-Matthew
    McCord, Rachel Patton
    Gibcus, Johan Harmen
    Naumova, Natalia
    Zhan, Ye
    Dekker, Job
    [J]. METHODS, 2012, 58 (03) : 268 - 276
  • [4] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [5] Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis
    Castresana, J
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (04) : 540 - 552
  • [6] Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot
    Chen, Jia-hui
    Huang, Yuan
    Brachi, Benjamin
    Yun, Quan-zheng
    Zhang, Wei
    Lu, Wei
    Li, Hong-na
    Li, Wen-qing
    Sun, Xu-dong
    Wang, Guang-yan
    He, Jun
    Zhou, Zhuo
    Chen, Kai-yun
    Ji, Yun-heng
    Shi, Ming-ming
    Sun, Wen-guang
    Yang, Yong-ping
    Zhang, Ren-gang
    Abbott, Richard J.
    Sun, Hang
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Increased glycolytic flux as an outcome of whole-genome duplication in yeast
    Conant, Gavin C.
    Wolfe, Kenneth H.
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
  • [8] Blast2GO:: a universal tool for annotation, visualization and analysis in functional genomics research
    Conesa, A
    Götz, S
    García-Gómez, JM
    Terol, J
    Talón, M
    Robles, M
    [J]. BIOINFORMATICS, 2005, 21 (18) : 3674 - 3676
  • [9] CAFE: a computational tool for the study of gene family evolution
    De Bie, T
    Cristianini, N
    Demuth, JP
    Hahn, MW
    [J]. BIOINFORMATICS, 2006, 22 (10) : 1269 - 1271
  • [10] Capturing chromosome conformation
    Dekker, J
    Rippe, K
    Dekker, M
    Kleckner, N
    [J]. SCIENCE, 2002, 295 (5558) : 1306 - 1311