Small Molecules for Enhancing the Precision and Safety of Genome Editing

被引:5
作者
Shin, Siyoon [1 ,2 ]
Jang, Seeun [1 ,2 ]
Lim, Donghyun [1 ,2 ]
机构
[1] Sungshin Univ, Sch Biopharmaceut & Med Sci, Seoul 01133, South Korea
[2] Sungshin Univ, Dept Next Generat Appl Sci, Seoul 01133, South Korea
来源
MOLECULES | 2022年 / 27卷 / 19期
基金
新加坡国家研究基金会;
关键词
genome editing; CRISPR; Cas nuclease; guide RNA; small molecule; specificity; CAS9; CRISPR-CAS9; INHIBITORS; PROTEIN; IDENTIFICATION; ACTIVATION; GENERATION; PLATFORM; SYSTEM; REPAIR;
D O I
10.3390/molecules27196266
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome-editing technologies have revolutionized biology, biotechnology, and medicine, and have spurred the development of new therapeutic modalities. However, there remain several barriers to the safe use of CRISPR technologies, such as unintended off-target DNA cleavages. Small molecules are important resources to solve these problems, given their facile delivery and fast action to enable temporal control of the CRISPR systems. Here, we provide a comprehensive overview of small molecules that can precisely modulate CRISPR-associated (Cas) nucleases and guide RNAs (gRNAs). We also discuss the small-molecule control of emerging genome editors (e.g., base editors) and anti-CRISPR proteins. These molecules could be used for the precise investigation of biological systems and the development of safer therapeutic modalities.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Genome Editing for the Study of Cardiovascular Diseases
    Chadwick, Alexandra C.
    Musunuru, Kiran
    CURRENT CARDIOLOGY REPORTS, 2017, 19 (03)
  • [32] Genome Editing: Engineering, Applications and Limitations
    Avramouli, Antigoni
    TABOO - TRANSGRESSION - TRANSCENDENCE IN ART AND SCIENCE (TTT 2016), 2017, : 229 - 241
  • [33] Efficient Precision Genome Editing in iPSCs via Genetic Co-targeting with Selection
    Mitzelfelt, Katie A.
    McDermott-Roe, Chris
    Grzybowski, Michael N.
    Marquez, Maribel
    Kuo, Chieh-Ti
    Riedel, Michael
    Lai, Shuping
    Choi, Melinda J.
    Kolander, Kurt D.
    Helbling, Daniel
    Dimmock, David P.
    Battle, Michele A.
    Jou, Chuanchau J.
    Tristani-Firouzi, Martin
    Verbsky, James W.
    Benjamin, Ivor J.
    Geurts, Aron M.
    STEM CELL REPORTS, 2017, 8 (03): : 491 - 499
  • [34] Genome editing in cotton: challenges and opportunities
    Khan, Zulqurnain
    Khan, Sultan Habibullah
    Ahmed, Aftab
    Iqbal, Muhammad Umar
    Mubarik, Muhammad Salman
    Ghouri, Muhammad Zubair
    Ahmad, Furqan
    Yaseen, Saba
    Ali, Zulfiqar
    Khan, Asif Ali
    Azhar, Muhammad Tehseen
    JOURNAL OF COTTON RESEARCH, 2023, 6 (01)
  • [35] Genome editing as a national security threat
    Esvelt, K.
    Millett, P. D.
    REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2017, 36 (02): : 459 - 465
  • [36] CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture
    Chen, Kunling
    Wang, Yanpeng
    Zhang, Rui
    Zhang, Huawei
    Gao, Caixia
    ANNUAL REVIEW OF PLANT BIOLOGY, VOL 70, 2019, 70 : 667 - 697
  • [37] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [38] A piggyBac-based toolkit for inducible genome editing in mammalian cells
    Schertzer, Megan D.
    Thulson, Eliza
    Braceros, Keean C. A.
    Lee, David M.
    Hinkle, Emma R.
    Murphy, Ryan M.
    Kim, Susan O.
    Vitucci, Eva C. M.
    Calabrese, J. Mauro
    RNA, 2019, 25 (08) : 1047 - 1058
  • [39] Controlling CRISPR with small molecule regulation for somatic cell genome editing
    Khajanchi, Namita
    Saha, Krishanu
    MOLECULAR THERAPY, 2022, 30 (01) : 17 - 31
  • [40] Therapeutic application of sequence-specific binding molecules for novel genome editing tools
    Nakao, Juki
    Yamamoto, Tsuyoshi
    Yamayoshi, Asako
    DRUG METABOLISM AND PHARMACOKINETICS, 2022, 42