Small Molecules for Enhancing the Precision and Safety of Genome Editing

被引:5
|
作者
Shin, Siyoon [1 ,2 ]
Jang, Seeun [1 ,2 ]
Lim, Donghyun [1 ,2 ]
机构
[1] Sungshin Univ, Sch Biopharmaceut & Med Sci, Seoul 01133, South Korea
[2] Sungshin Univ, Dept Next Generat Appl Sci, Seoul 01133, South Korea
来源
MOLECULES | 2022年 / 27卷 / 19期
基金
新加坡国家研究基金会;
关键词
genome editing; CRISPR; Cas nuclease; guide RNA; small molecule; specificity; CAS9; CRISPR-CAS9; INHIBITORS; PROTEIN; IDENTIFICATION; ACTIVATION; GENERATION; PLATFORM; SYSTEM; REPAIR;
D O I
10.3390/molecules27196266
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome-editing technologies have revolutionized biology, biotechnology, and medicine, and have spurred the development of new therapeutic modalities. However, there remain several barriers to the safe use of CRISPR technologies, such as unintended off-target DNA cleavages. Small molecules are important resources to solve these problems, given their facile delivery and fast action to enable temporal control of the CRISPR systems. Here, we provide a comprehensive overview of small molecules that can precisely modulate CRISPR-associated (Cas) nucleases and guide RNAs (gRNAs). We also discuss the small-molecule control of emerging genome editors (e.g., base editors) and anti-CRISPR proteins. These molecules could be used for the precise investigation of biological systems and the development of safer therapeutic modalities.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] History of genome editing in yeast
    Fraczek, Marcin G.
    Naseeb, Samina
    Delneri, Daniela
    YEAST, 2018, 35 (05) : 361 - 368
  • [22] Advances in Crop Breeding Through Precision Genome Editing
    Nerkar, Gauri
    Devarumath, Suman
    Purankar, Madhavi
    Kumar, Atul
    Valarmathi, R.
    Devarumath, Rachayya
    Appunu, C.
    FRONTIERS IN GENETICS, 2022, 13
  • [23] Deconstructing cancer with precision genome editing
    Johnson, Grace A.
    Gould, Samuel I.
    Sanchez-Rivera, Francisco J.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2024, 52 (02) : 803 - 819
  • [24] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Nihongaki, Yuta
    Kawano, Fuun
    Nakajima, Takahiro
    Sato, Moritoshi
    NATURE BIOTECHNOLOGY, 2015, 33 (07) : 755 - 760
  • [25] A Transgenic Core Facility's Experience in Genome Editing Revolution
    Yuan, Celvie L.
    Hu, Yueh-Chiang
    PRECISION MEDICINE, CRISPR, AND GENOME ENGINEERING: MOVING FROM ASSOCIATION TO BIOLOGY AND THERAPEUTICS, 2017, 1016 : 75 - 90
  • [26] CRISPR/Cas-Mediated Genome Editing for Sugarcane Improvement
    Mall, A. K.
    Manimekalai, R.
    Misra, Varucha
    Pandey, Himanshu
    Srivastava, Sangeeta
    Sharma, Avinash
    SUGAR TECH, 2025, 27 (01) : 1 - 13
  • [27] Use of designer nucleases for targeted gene and genome editing in plants
    Weeks, Donald P.
    Spalding, Martin H.
    Yang, Bing
    PLANT BIOTECHNOLOGY JOURNAL, 2016, 14 (02) : 483 - 495
  • [28] Prime Editing in Mammals: The Next Generation of Precision Genome Editing
    Wang, Dawei
    Fan, Xiude
    Li, Mengzhu
    Liu, Tianbo
    Lu, Peng
    Wang, Guangxin
    Li, Yuan
    Han, JunMing
    Zhao, JiaJun
    CRISPR JOURNAL, 2022, 5 (06): : 746 - 768
  • [29] Bidirectional Prime Editing: Combining Precision with Versatility for Genome Editing
    Choudhery, Mahmood S.
    Arif, Taqdees
    Mahmood, Ruhma
    CELLULAR REPROGRAMMING, 2025, 27 (01) : 10 - 23
  • [30] Therapeutic Genome Editing and In Vivo Delivery
    Ramirez-Phillips, Amanda Catalina
    Liu, Dexi
    AAPS JOURNAL, 2021, 23 (04)