Cu2AgInSe4 QDs sensitized electrospun porous TiO2 nanofibers as an efficient photoanode for quantum dot sensitized solar cells

被引:23
作者
Kottayi, Roopakala [1 ,2 ]
Panneerselvam, Pratheep [1 ]
Murugadoss, Vignesh [1 ]
Sittaramane, Ramadasse [2 ]
Angaiah, Subramania [1 ]
机构
[1] Pondicherry Univ, Ctr Nanosci & Technol, Electromat Res Lab, Pondicherry 605014, India
[2] Kanchi Mamunivar Govt Inst Post Grad Studies & Re, Dept Phys, Pondicherry 605008, India
关键词
Cu2AgInSe4; QDs; Tauc plot; Porous TiO2 Nanofibers; Hot injection method; QDSC; COUNTER ELECTRODES; SE; PHOTOLUMINESCENCE; ANATASE; AGINS2; NANOPARTICLES; RECOMBINATION; NANOCRYSTALS; MECHANISMS; SURFACE;
D O I
10.1016/j.solener.2020.02.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To obtain an efficient quantum dot sensitized solar cell (QDSC), a less toxic quaternary Cu2AgInSe4 QDs with 4.8 nm in size are synthesized by a simple hot injection method. The crystallite size and tetragonal structure are confirmed by XRD and HR-TEM analysis. Energy-dispersive X-ray spectroscopy analysis reveals that the atomic ratio of Cu: Ag: In: Se in the Cu2AgInSe4 QDs is 1.98:1.0:1.03:3.86. The oxidation state of the elements composed in Cu2AgInSe4 QDs is confirmed by XPS studies. Optical properties are studied from the UV-Vis-NIR absorption spectrum and photoluminescence emission spectrum. The porous TiO2 nanofibers (P-TiO2 NFs) are prepared from the conventional electrospun TiO2 NFs followed by the solvosonication process. The FE-SEM analysis is confirmed the porous texture of the TiO2 NFs. The bandgap of the Cu2AgInSe4 QDs and TiO2 NFs are determined from the Tauc plot and it was found to be 1.93 eV and 3.19 eV, respectively. QDSC is assembled using Cu2S counter electrode, polysulfide redox couple electrolyte and Cu2AgInSe4 QDs sensitized P-TiO2 NFs photoanode. The photoconversion efficiency (PCE) of the assembled QDSC is found to be 4.24%.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 65 条
[1]   Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture [J].
Abate, Mulu Alemayehu ;
Chang, Jia-Yaw .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 :37-44
[2]   Photoluminescence of anatase and rutile TiO2 particles [J].
Abazovic, Nadica D. ;
Comor, Mirjana I. ;
Dramicanin, Miroslav D. ;
Jovanovic, Dragana J. ;
Ahrenkiel, S. Phillip ;
Nedeljkovic, Jovan M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25366-25370
[3]  
Ajjammouri T, 2016, INT RENEW SUST ENERG, P797, DOI 10.1109/IRSEC.2016.7983993
[4]  
Angaiah S., 2018, Engineered Science, V4, P44, DOI DOI 10.30919/ES8D756
[5]   Application of quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells based on the hydrolysis approach [J].
Bai, Bing ;
Kou, Dongxing ;
Zhou, Wenhui ;
Zhou, Zhengji ;
Wu, Sixin .
GREEN CHEMISTRY, 2015, 17 (08) :4377-4382
[6]   Semi-industrial Green Mechanochemical Syntheses of Solar Cell Absorbers Based on Quaternary Sulfides [J].
Balaz, Peter ;
Hegedus, Michal ;
Achimovicova, Marcela ;
Balaz, Matej ;
Tesinsky, Matej ;
Dutkova, Erika ;
Kanuchova, Maria ;
Briancin, Jaroslav .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (02) :2132-2141
[7]   Arylthiolate-protected silver quantum dots [J].
Branham, Matthew R. ;
Douglas, Alicia D. ;
Mills, Allan J. ;
Tracy, Joseph B. ;
White, Peter S. ;
Murray, Royce W. .
LANGMUIR, 2006, 22 (26) :11376-11383
[8]   Investigation into the Selenization Mechanisms of Wurtzite CZTS Nanorods [J].
Bree, Gerard ;
Coughlan, Claudia ;
Geaney, Hugh ;
Ryan, Kevin M. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) :7117-7125
[9]   Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells [J].
Cai, Chunqi ;
Zhai, Lanlan ;
Ma, Yahui ;
Zou, Chao ;
Zhang, Lijie ;
Yang, Yun ;
Huang, Shaoming .
JOURNAL OF POWER SOURCES, 2017, 341 :11-18
[10]   Conduction and valence band offsets of LaAl2O3 with (-201) β-Ga2O3 [J].
Carey, Patrick H. ;
Ren, Fan ;
Hays, David C. ;
Gila, Brent P. ;
Pearton, Stephen J. ;
Jang, Soohwan ;
Kuramata, Akito .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2017, 35 (04)