Robot trajectory planning with semi-infinite programming

被引:46
作者
Vaz, AIF
Fernandes, EMGP
Gomes, MPSF
机构
[1] Univ Minho, Escola Engn, Dept Prod & Sist, P-4710057 Braga, Portugal
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, Mechatron Med Lab, London SW7 2BX, England
关键词
nonlinear programming; robot trajectory planning; semi-infinite programming; discretization method; SIPAMPL database;
D O I
10.1016/S0377-2217(03)00266-2
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we describe how robot trajectory planning can be formulated as a semi-infinite programming (SIP) problem. The formulation as a SIP problem allowed us to treat the problem with one of the three main classes of methods for solving SIP, the discretization class. Two of the robotics trajectory planning problems formulated were coded in the SIPAMPL environment which is publicly available. A B-Spline library was also created to allow the codification of the robotics trajectory problem. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:607 / 617
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 2000, OPTIMIZATION
[2]  
Craig J.J., 1989, INTRO ROBOTICS MECH, DOI 10.7227/IJEEE.41.4.11
[3]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[4]   A MODELING LANGUAGE FOR MATHEMATICAL-PROGRAMMING [J].
FOURER, R ;
GAY, DM ;
KERNIGHAN, BW .
MANAGEMENT SCIENCE, 1990, 36 (05) :519-554
[5]   TIME-OPTIMAL MOTIONS OF ROBOTS IN ASSEMBLY TASKS [J].
GEERING, HP ;
GUZZELLA, L ;
HEPNER, SAR ;
ONDER, CH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (06) :512-518
[6]  
GILL PE, 1986, USERS GUIDE NPSOL FO
[7]   Optimal signal sets for non-Gaussian detectors [J].
Gockenbach, MS ;
Kearsley, AJ .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (02) :316-326
[8]  
HAARENRETAGNE E, 1992, THESIS U TRIER
[9]   SEMIINFINITE PROGRAMMING - THEORY, METHODS, AND APPLICATIONS [J].
HETTICH, R ;
KORTANEK, KO .
SIAM REVIEW, 1993, 35 (03) :380-429
[10]   AN IMPLEMENTATION OF A DISCRETIZATION METHOD FOR SEMI-INFINITE PROGRAMMING [J].
HETTICH, R .
MATHEMATICAL PROGRAMMING, 1986, 34 (03) :354-361