Accelerated Digital Biodetection Using Magneto-plasmonic Nanoparticle-Coupled Photonic Resonator Absorption Microscopy

被引:22
作者
Che, Congnyu [1 ,2 ]
Xue, Ruiyang [3 ]
Li, Nantao [2 ,4 ]
Gupta, Prashant [5 ]
Wang, Xiaojing [2 ,6 ]
Zhao, Bin [2 ,6 ]
Singamaneni, Srikanth [5 ]
Nie, Shuming [1 ,3 ,4 ,7 ]
Cunningham, Brian T. [1 ,2 ,4 ,6 ]
机构
[1] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[2] Univ Illinois, Nick Holonyak Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[5] Washington Univ, Dept Mech Engn & Mat Sci, Inst Mat Sci & Engn, St Louis, MO 63031 USA
[6] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
photonic crystal; magneto-plasmonic nanoparticle; fast digital detection; microRNA; strand displacement; LIQUID BIOPSIES; MICRORNAS; OPPORTUNITIES; SENSITIVITY; CHALLENGES; MECHANISM; CANCER; GENES; POINT; SHAPE;
D O I
10.1021/acsnano.1c08569
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rapid, ultrasensitive, and selective quantification of circulating microRNA (miRNA) biomarkers in body fluids is increasingly deployed in early cancer diagnosis, prognosis, and therapy monitoring. While nanoparticle tags enable detection of nucleic acid or protein biomarkers with digital resolution and subfemtomolar detection limits without enzymatic amplification, the response time of these assays is typically dominated by diffusion-limited transport of the analytes or nanotags to the biosensor surface. Here, we present a magnetic activate capture and digital counting (mAC+DC) approach that utilizes magneto-plasmonic nanoparticles (MPNPs) to accelerate single-molecule sensing, demonstrated by miRNA detection via toeholdmediated strand displacement. Spiky Fe3O4@Au MPNPs with immobilized target-specific probes are "activated" by binding with miRNA targets, followed by magnetically driven transport through the bulk fluid toward nanoparticle capture probes on a photonic crystal (PC). By spectrally matching the localized surface plasmon resonance of the MPNPs to the PC-guided resonance, each captured MPNP locally quenches the PC reflection efficiency, thus enabling captured MPNPs to be individually visualized with high contrast for counting. We demonstrate quantification of the miR-375 cancer biomarker directly from unprocessed human serum with a 1 min response time, a detection limit of 61.9 aM, a broad dynamic range (100 aM to 10 pM), and a single-base mismatch selectivity. The approach is well-suited for minimally invasive biomarker quantification, enabling potential applications in point-of-care testing with short sample-to-answer time.
引用
收藏
页码:2345 / 2354
页数:10
相关论文
共 47 条
  • [21] Ghosh S, 2021, BIOMED OPT EXPRESS, V12, P4637, DOI 10.1364/BOE.427475
  • [22] Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis
    Gooding, J. Justin
    Gaus, Katharina
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (38) : 11354 - 11366
  • [23] Complex Oxide-Noble Metal Conjugated Nanoparticles
    Guo, Jun-Ling
    Chiou, Yao-De
    Liang, Wen-I
    Liu, Heng-Jui
    Chen, Ying-Jiun
    Kuo, Wei-Cheng
    Tsai, Chih-Ya
    Tsai, Kai-An
    Kuo, Ho-Hung
    Hsieh, Wen-Feng
    Juang, Jenh-Yih
    Hsu, Yung-Jung
    Lin, Hong-Ji
    Chen, Chien-Te
    Liao, Xue-Pin
    Shi, Bi
    Chu, Ying-Hao
    [J]. ADVANCED MATERIALS, 2013, 25 (14) : 2040 - 2044
  • [24] Microcavity-Mediated Spectrally Tunable Amplification of Absorption in Plasmonic Nanoantennas
    Huang, Qinglan
    Cunningham, Brian T.
    [J]. NANO LETTERS, 2019, 19 (08) : 5297 - 5303
  • [25] MicroRNA Detection: Current Technology and Research Strategies
    Hunt, Eric A.
    Broyles, David
    Head, Trajen
    Deo, Sapna K.
    [J]. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 8, 2015, 8 : 217 - 237
  • [26] Kelley SO, 2014, NAT NANOTECHNOL, V9, P969, DOI [10.1038/nnano.2014.261, 10.1038/NNANO.2014.261]
  • [27] The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
    Kelly, KL
    Coronado, E
    Zhao, LL
    Schatz, GC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) : 668 - 677
  • [28] Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles
    Kim, Ji-wook
    Seo, Daeha
    Lee, Jung-uk
    Southard, Kaden M.
    Lim, Yongjun
    Kim, Daehyun
    Gartner, Zev J.
    Jun, Young-wook
    Cheon, Jinwoo
    [J]. NATURE PROTOCOLS, 2017, 12 (09) : 1871 - 1889
  • [29] Inorganic Nanoparticles as Protein Mimics
    Kotov, Nicholas A.
    [J]. SCIENCE, 2010, 330 (6001) : 188 - 189
  • [30] Identification of novel genes coding for small expressed RNAs
    Lagos-Quintana, M
    Rauhut, R
    Lendeckel, W
    Tuschl, T
    [J]. SCIENCE, 2001, 294 (5543) : 853 - 858