Residual D2NN: training diffractive deep neural networks via learnable light shortcuts

被引:65
作者
Dou, Hongkun [1 ]
Deng, Yue [1 ,7 ]
Yan, Tao [2 ,5 ]
Wu, Huaqiang [3 ,4 ]
Lin, Xing [2 ,3 ,5 ]
Dai, Qionghai [2 ,5 ,6 ]
机构
[1] Beihang Univ, Sch Astronaut, Beijing 100191, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Beijing Innovat Ctr Future Chip, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[7] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
19;
D O I
10.1364/OL.389696
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The diffractive deep neural network ((DNN)-N-2) has demonstrated its importance in performing various all-optical machine learning tasks, e.g., classification, segmentation, etc. However, deeper D(2)NNs that provide higher inference complexity are more difficult to train due to the problem of gradient vanishing. We introduce the residual D(2)NNs (Res-(DNN)-N-2), which enables us to train substantially deeper diffractive networks by constructing diffractive residual learning blocks to learn the residual mapping functions. Unlike the existing plain D(2)NNs, Res-D(2)NNs contribute to the design of a learnable light shortcut to directly connect the input and output between optical layers. Such a shortcut offers a direct path for gradient backpropagation in training, which is an effective way to alleviate the gradient vanishing issue on very deep diffractive neural networks. Experimental results on image classification and pixel super-resolution demonstrate the superiority of Res-D(2)NNs over the existing plain (DNN)-N-2 architectures. (C) 2020 Optical Society of America
引用
收藏
页码:2688 / 2691
页数:4
相关论文
共 19 条
  • [1] Theory of incoherent self-focusing in biased photorefractive media
    Christodoulides, DN
    Coskun, TH
    Mitchell, M
    Segev, M
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (04) : 646 - 649
  • [2] Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning
    Deng, Yue
    Bao, Feng
    Dai, Qionghai
    Wu, Lani F.
    Altschuler, Steven J.
    [J]. NATURE METHODS, 2019, 16 (04) : 311 - +
  • [3] Deep Direct Reinforcement Learning for Financial Signal Representation and Trading
    Deng, Yue
    Bao, Feng
    Kong, Youyong
    Ren, Zhiquan
    Dai, Qionghai
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (03) : 653 - 664
  • [4] All-optical spiking neurosynaptic networks with self-learning capabilities
    Feldmann, J.
    Youngblood, N.
    Wright, C. D.
    Bhaskaran, H.
    Pernice, W. H. P.
    [J]. NATURE, 2019, 569 (7755) : 208 - +
  • [5] He K., 2016, Deep residual learning for image recognition, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
  • [6] Huang JW, 2017, 2017 17TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT 2017), P598, DOI 10.1109/ICCT.2017.8359706
  • [7] Training of photonic neural networks through in situ backpropagation and gradient measurement
    Hughes, Tyler W.
    Minkov, Momchil
    Shi, Yu
    Fan, Shanhui
    [J]. OPTICA, 2018, 5 (07): : 864 - 871
  • [8] Scope of validity of PSNR in image/video quality assessment
    Huynh-Thu, Q.
    Ghanbari, M.
    [J]. ELECTRONICS LETTERS, 2008, 44 (13) : 800 - U35
  • [9] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [10] All-optical machine learning using diffractive deep neural networks
    Lin, Xing
    Rivenson, Yair
    Yardimei, Nezih T.
    Veli, Muhammed
    Luo, Yi
    Jarrahi, Mona
    Ozcan, Aydogan
    [J]. SCIENCE, 2018, 361 (6406) : 1004 - +