Graphene oxide-functionalized dual-scale channels architecture for high-throughput removal of organic pollutants from water

被引:32
作者
Tian, Jian [1 ,3 ]
Wei, Junfu [1 ,2 ,3 ,4 ]
Zhang, Huan [1 ,2 ,3 ]
Kong, Zhiyun [1 ,2 ,3 ]
Zhu, Yingwen [1 ,4 ]
Qin, Zhi [1 ,4 ]
机构
[1] Natl Ctr Int Joint Res Separat Membranes, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tianjin Engn Ctr Safety Evaluat Water & Safeguard, Tianjin 300387, Peoples R China
[3] Tianjin Polytech Univ, Sch Environm & Chem Engn, Tianjin 300387, Peoples R China
[4] Tianjin Polytech Univ, Sch Mat Sci & Engn, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene oxide; Polypropylene nonwoven; Adsorption; Filtration; Organic pollutants; AQUEOUS-SOLUTION; BISPHENOL-A; DYE ADSORPTION; CARBON; CONTAMINANTS; PERFORMANCE; FABRICATION; NANOSHEETS; COMPOSITES; ISOTHERMS;
D O I
10.1016/j.cej.2018.12.048
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Amino-functionalized polypropylene nonwoven/graphene oxide (GO) hybrid material (PP-g-DMAEMA/GO) with dual-scale channels structure was fabricated via irradiation polymerization and self-assembly method for rapid removal of 7 kinds of organic pollutants from water. The GO sheets tethered to grafted branches of dimethylaminoethyl methacrylate (DMAEMA) on PP fiber surface could form nanochannels between GO and fiber. Meanwhile, polypropylene nonwoven could provide the backbone for building micron-channels. The overlapped and intertwined structure of PP-g-DMAEMA/GO with many channels assures water permeating fluently, and the GO could capture quickly the organic pollutants carried by water both in batch and filtration process. The obtained PP-g-DMAEMA/GO could keep 74.3% of the adsorption performance of GO, which demonstrated two sides of GO could afford accessible binding sites. While the flow rate reach 40 mL/min, the PP-g-DMAEMA/GO was able to effectively remove Bisphenol A (BPA) with the contact time of 3.4 s. Moreover, the PP-g-DMAEMA/GO could simply be recovered by washing with ethanol solution. We conclude the paper that the facile synthesis of PP-g-DMAEMA/GO exploiting inexpensive PP nonwoven offer high water permeability, solving the separation problem of GO, and promising potential for applications of GO for water applications.
引用
收藏
页码:852 / 862
页数:11
相关论文
共 50 条
[1]   Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters [J].
Abdul, Ghaffar ;
Zhu, Xiaoying ;
Chen, Baoliang .
CHEMICAL ENGINEERING JOURNAL, 2017, 319 :9-20
[2]   Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer [J].
Alsbaiee, Alaaeddin ;
Smith, Brian J. ;
Xiao, Leilei ;
Ling, Yuhan ;
Helbling, Damian E. ;
Dichtel, William R. .
NATURE, 2016, 529 (7585) :190-U146
[3]   Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon [J].
Apul, Onur Guven ;
Wang, Qiliang ;
Zhou, Yang ;
Karanfil, Tanju .
WATER RESEARCH, 2013, 47 (04) :1648-1654
[4]   Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance [J].
Bae, Chang-Jun ;
Erdonmez, Can K. ;
Halloran, John W. ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1254-1258
[5]   One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis [J].
Cao, Jiao ;
Yang, Zhao-hui ;
Xiong, Wei-ping ;
Zhou, Yao-yu ;
Peng, Yan-rong ;
Li, Xin ;
Zhou, Cheng-yun ;
Xu, Rui ;
Zhang, Yan-ru .
CHEMICAL ENGINEERING JOURNAL, 2018, 353 :126-137
[6]   A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment [J].
Chabot, Victor ;
Higgins, Drew ;
Yu, Aiping ;
Xiao, Xingcheng ;
Chen, Zhongwei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1564-1596
[7]   Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite [J].
Chandra, Vimlesh ;
Kim, Kwang S. .
CHEMICAL COMMUNICATIONS, 2011, 47 (13) :3942-3944
[8]   Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal [J].
Chen, Dan ;
Zhang, Huining ;
Yang, Kai ;
Wang, Hongyu .
JOURNAL OF HAZARDOUS MATERIALS, 2016, 310 :179-187
[9]   Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models [J].
Chiron, N ;
Guilet, R ;
Deydier, E .
WATER RESEARCH, 2003, 37 (13) :3079-3086
[10]   Preparation and Evaluation of Self-Assembled Porous Microspheres-Fibers for Removal of Bisphenol A from Aqueous Solution [J].
Cui, Li ;
Wei, Junfu ;
Du, Xiao ;
Zhou, Xiangyu .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (06) :1566-1574