Electrodeposition of Ni on Bi2Te3 and Interfacial Reaction Between Sn and Ni-Coated Bi2Te3

被引:7
|
作者
Tseng, Yu-Chen [1 ]
Lee, Hsuan [1 ]
Hau, Nga Yu [2 ]
Feng, Shien-Ping [2 ]
Chen, Chih-Ming [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Chem Engn, Taichung 402, Taiwan
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Electroplating; Ni; thermoelectric; intermetallic compound; THERMOELECTRIC-MATERIALS; DIFFUSION BARRIER; COUPLES; ALLOYS; TEMPERATURE; PERFORMANCE; GENERATORS; EVOLUTION; GROWTH; YIELD;
D O I
10.1007/s11664-017-5777-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bismuth-telluride (Bi2Te3)-based compounds are common thermoelectric materials used for low-temperature applications, and nickel (Ni) is usually deposited on the Bi2Te3 substrates as a diffusion barrier. Deposition of Ni on the p-type (Sb-doped) and n-type (Se-doped) Bi2Te3 substrates using electroplating and interfacial reactions between Sn and Ni-coated Bi2Te3 substrates are investigated. Electrodeposition of Ni on different Bi2Te3 substrates is characterized based on cyclic voltammetry and Tafel measurements. Microstructural characterizations of the Ni deposition and the Sn/Ni/Bi2Te3 interfacial reactions are performed using scanning electron microscopy. A faster growth rate is observed for the Ni deposition on the n-type Bi2Te3 substrate which is attributed to a lower activation energy of reduction due to a higher density of free electrons in the n-type Bi2Te3 material. The common Ni3Sn4 phase is formed at the Sn/Ni interfaces on both the p-type and n-type Bi2Te3 substrates, while the NiTe phase is formed at a faster rate at the interface between Ni and n-type Bi2Te3 substrates.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [31] The Effect of Reactive Electric Field-Assisted Sintering of MoS2/Bi2Te3 Heterostructure on the Phase Integrity of Bi2Te3 Matrix and the Thermoelectric Properties
    Wang, Yanan
    Bourges, Cedric
    Rajamathi, Ralph
    Nethravathi, C.
    Rajamathi, Michael
    Mori, Takao
    MATERIALS, 2022, 15 (01)
  • [32] Interfacial Step Structure at a (0001) Basal Twin in Bi2Te3
    Medlin, D. L.
    Yang, N. Y. C.
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (06) : 1456 - 1464
  • [33] Lorenz Function of Bi2Te3/Sb2Te3 Superlattices
    Hinsche, N. F.
    Mertig, I.
    Zahn, P.
    JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (07) : 1406 - 1410
  • [34] Effects of Different Morphologies of Bi2Te3 Nanopowders on Thermoelectric Properties
    Wu, Fang
    Song, Hongzhang
    Gao, Feng
    Shi, Wenyu
    Jia, Jianfeng
    Hu, Xing
    JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (06) : 1140 - 1145
  • [35] Mechanical bonding and metallurgical bonding synergistically optimize the shear properties of the Ni/Bi2Te3 joint interface
    Fang, Cheng
    Chen, Gang
    Li, Zifeng
    Wang, Xu
    Duan, Bo
    Feng, Xiaobin
    Li, Guodong
    Zhai, Pengcheng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2025, 36 (03)
  • [36] Synthesis and Characterization of Bi2Te3 Nanostructured Thin Films
    Agarwal, Khushboo
    Sharma, Rishabh
    Mehta, B. R.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) : 2882 - 2886
  • [37] Thermoelectric Response in Single Quintuple Layer Bi2Te3
    Sharma, S.
    Schwingenschlogl, U.
    ACS ENERGY LETTERS, 2016, 1 (04): : 875 - 879
  • [38] Diffusion bonding at the interface of Bi2Te3 thermoelectric modules
    Yen Ngoc Nguyen
    Son, Injoon
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 292
  • [39] Semiconductor parameters of Bi2Te3 single crystal
    Nassary, M. M.
    Shaban, H. T.
    El-Sadek, M. S.
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 113 (01) : 385 - 388
  • [40] On atomic mechanisms governing the oxidation of Bi2Te3
    Music, Denis
    Chang, Keke
    Schmidt, Paul
    Braun, Felix N.
    Heller, Martin
    Hermsen, Steffen
    Poellmann, Peter J.
    Schulzendorff, Till
    Wagner, Cedric
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (48)