Fidelity recovery in chaotic systems and the Debye-Waller factor -: art. no. 244101

被引:23
作者
Stöckmann, HJ [1 ]
Schäfer, R [1 ]
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
关键词
D O I
10.1103/PhysRevLett.94.244101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using supersymmetry calculations and random matrix simulations, we study the decay of the average of the fidelity amplitude f(epsilon)(tau)=<psi(0)\exp(2 pi iH(epsilon)tau)exp(-2 pi iH(0)tau)\psi(0)>, where H-epsilon differs from H-0 by a slight perturbation characterized by the parameter epsilon. For strong perturbations a recovery of f(epsilon)(tau) at the Heisenberg time tau=1 is found. It is most pronounced for the Gaussian symplectic ensemble, and least for the Gaussian orthogonal one. Using Dyson's Brownian-motion model for an eigenvalue crystal, the recovery is interpreted in terms of a spectral analogue of the Debye-Waller factor known from solid state physics, describing the decrease of x-ray and neutron diffraction peaks with temperature due to lattice vibrations.
引用
收藏
页数:4
相关论文
共 12 条
[1]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[2]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034
[3]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[4]   Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections [J].
Frahm, KM ;
Fleckinger, R ;
Shepelyansky, DL .
EUROPEAN PHYSICAL JOURNAL D, 2004, 29 (01) :139-155
[5]   A random matrix formulation of fidelity decay [J].
Gorin, T ;
Prosen, T ;
Seligman, TH .
NEW JOURNAL OF PHYSICS, 2004, 6
[6]   Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo [J].
Jacquod, P ;
Silvestrov, PG ;
Beenakker, CWJ .
PHYSICAL REVIEW E, 2001, 64 (05) :4-055203
[7]   Environment-independent decoherence rate in classically chaotic systems [J].
Jalabert, RA ;
Pastawski, HM .
PHYSICAL REVIEW LETTERS, 2001, 86 (12) :2490-2493
[8]   QUANTUM DYNAMICAL ECHOES IN THE SPIN-DIFFUSION IN MESOSCOPIC SYSTEMS [J].
PASTAWSKI, HM ;
LEVSTEIN, PR ;
USAJ, G .
PHYSICAL REVIEW LETTERS, 1995, 75 (23) :4310-4313
[9]   STABILITY OF QUANTUM MOTION IN CHAOTIC AND REGULAR SYSTEMS [J].
PERES, A .
PHYSICAL REVIEW A, 1984, 30 (04) :1610-1615
[10]   Stability of quantum motion and correlation decay [J].
Prosen, T ;
Znidaric, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (06) :1455-1481